Marginalizing Sample Consensus
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F22%3A00360487" target="_blank" >RIV/68407700:21110/22:00360487 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/22:00360487
Výsledek na webu
<a href="https://doi.org/10.1109/TPAMI.2021.3103562" target="_blank" >https://doi.org/10.1109/TPAMI.2021.3103562</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TPAMI.2021.3103562" target="_blank" >10.1109/TPAMI.2021.3103562</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Marginalizing Sample Consensus
Popis výsledku v původním jazyce
A new method for robust estimation, MAGSAC++, is proposed. It introduces a new model quality (scoring) function that does not make inlier-outlier decisions, and a novel marginalization procedure formulated as an M-estimation with a novel class of M-estimators (a robust kernel) solved by an iteratively re-weighted least squares procedure. Instead of the inlier-outlier threshold, it requires only its loose upper bound which can be chosen from a significantly wider range. Also, we propose a new termination criterion and a technique for selecting a set of inliers in a data-driven manner as a post-processing step after the robust estimation finishes. On a number of publicly available real-world datasets for homography, fundamental matrix fitting and relative pose, MAGSAC++ produces results superior to the state-of-the-art robust methods. It is more geometrically accurate, fails fewer times, and it is often faster. It is shown that MAGSAC++ is significantly less sensitive to the setting of the threshold upper bound than the other state-of-the-art algorithms to the inlier-outlier threshold. Therefore, it is easier to be applied to unseen problems and scenes without acquiring information by hand about the setting of the inlier-outlier threshold. The source code and examples both in C++ and Python are available at https://github.com/danini/magsac .
Název v anglickém jazyce
Marginalizing Sample Consensus
Popis výsledku anglicky
A new method for robust estimation, MAGSAC++, is proposed. It introduces a new model quality (scoring) function that does not make inlier-outlier decisions, and a novel marginalization procedure formulated as an M-estimation with a novel class of M-estimators (a robust kernel) solved by an iteratively re-weighted least squares procedure. Instead of the inlier-outlier threshold, it requires only its loose upper bound which can be chosen from a significantly wider range. Also, we propose a new termination criterion and a technique for selecting a set of inliers in a data-driven manner as a post-processing step after the robust estimation finishes. On a number of publicly available real-world datasets for homography, fundamental matrix fitting and relative pose, MAGSAC++ produces results superior to the state-of-the-art robust methods. It is more geometrically accurate, fails fewer times, and it is often faster. It is shown that MAGSAC++ is significantly less sensitive to the setting of the threshold upper bound than the other state-of-the-art algorithms to the inlier-outlier threshold. Therefore, it is easier to be applied to unseen problems and scenes without acquiring information by hand about the setting of the inlier-outlier threshold. The source code and examples both in C++ and Python are available at https://github.com/danini/magsac .
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN
0162-8828
e-ISSN
1939-3539
Svazek periodika
44
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
8420-8432
Kód UT WoS článku
000864325900080
EID výsledku v databázi Scopus
2-s2.0-85139572054