Role of Economic Policy Uncertainty in Energy Commodities Prices Forecasting: Evidence from a Hybrid Deep Learning Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F24%3A100196" target="_blank" >RIV/60460709:41110/24:100196 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10614-024-10550-3" target="_blank" >https://doi.org/10.1007/s10614-024-10550-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10614-024-10550-3" target="_blank" >10.1007/s10614-024-10550-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Role of Economic Policy Uncertainty in Energy Commodities Prices Forecasting: Evidence from a Hybrid Deep Learning Approach
Popis výsledku v původním jazyce
Amidst a dynamic energy market landscape, understanding evolving influencing factors is pivotal. Accurate forecasting techniques are indispensable for effective energy resource management. This study focuses on illuminating insights into economic uncertainty and commodity price forecasting. A meticulously curated dataset spanning January 2000 to December 2022 forms the foundation, incorporating diverse economic and financial uncertainty metrics. Through an innovative research framework, we discern influential factors and forecast their trajectories. Three deep learning models-Short-Term Memory, Gated Recurrent Units, and Multilayer Perception Network-are deployed. The Multilayer Perception model emerges as the standout, showcasing exceptional predictive capability rooted in its adeptness at decoding intricate market patterns. This finding holds significance for policymakers, industry experts, and energy economists. The Multilayer Perception model's supremacy offers a robust tool for decision-making in crafting economic policies and navigating volatile markets.
Název v anglickém jazyce
Role of Economic Policy Uncertainty in Energy Commodities Prices Forecasting: Evidence from a Hybrid Deep Learning Approach
Popis výsledku anglicky
Amidst a dynamic energy market landscape, understanding evolving influencing factors is pivotal. Accurate forecasting techniques are indispensable for effective energy resource management. This study focuses on illuminating insights into economic uncertainty and commodity price forecasting. A meticulously curated dataset spanning January 2000 to December 2022 forms the foundation, incorporating diverse economic and financial uncertainty metrics. Through an innovative research framework, we discern influential factors and forecast their trajectories. Three deep learning models-Short-Term Memory, Gated Recurrent Units, and Multilayer Perception Network-are deployed. The Multilayer Perception model emerges as the standout, showcasing exceptional predictive capability rooted in its adeptness at decoding intricate market patterns. This finding holds significance for policymakers, industry experts, and energy economists. The Multilayer Perception model's supremacy offers a robust tool for decision-making in crafting economic policies and navigating volatile markets.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Economics
ISSN
0927-7099
e-ISSN
0927-7099
Svazek periodika
64
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
21
Strana od-do
3295-3315
Kód UT WoS článku
001171328100001
EID výsledku v databázi Scopus
—