PV Advancements & Challenges: Forecasting Techniques, Real Applications, and Grid Integration for a Sustainable Energy Future
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254589" target="_blank" >RIV/61989100:27240/23:10254589 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10194796" target="_blank" >https://ieeexplore.ieee.org/document/10194796</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EEEIC/ICPSEurope57605.2023.10194796" target="_blank" >10.1109/EEEIC/ICPSEurope57605.2023.10194796</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PV Advancements & Challenges: Forecasting Techniques, Real Applications, and Grid Integration for a Sustainable Energy Future
Popis výsledku v původním jazyce
The rapid increase in solar power generation requires accurate forecasting of photovoltaic (PV) energy production for effective grid integration and energy market participation. This paper presents state-of-the-art forecasting techniques and models, including statistical and time series models, machine learning models, deep learning models, probabilistic forecasting models, and data-driven feature engineering and selection. In addition, applications of PV energy production forecasting in grid integration and energy market operations such as load balancing, generation planning, transmission and distribution planning, energy storage optimisation, bidding strategies, and renewable energy certificate trading are presented. Furthermore, challenges persist in PV power generation forecasting are presented, including data quality and availability, model uncertainty, forecast horizon and time resolution, and integration of multiple data sources and models. Finally, this article focusses on providing insight into the current PV energy production forecasting landscape and guiding future research and development efforts to address these challenges, enhance forecasting capabilities, and facilitate the global transition to a more sustainable and low-carbon energy future.
Název v anglickém jazyce
PV Advancements & Challenges: Forecasting Techniques, Real Applications, and Grid Integration for a Sustainable Energy Future
Popis výsledku anglicky
The rapid increase in solar power generation requires accurate forecasting of photovoltaic (PV) energy production for effective grid integration and energy market participation. This paper presents state-of-the-art forecasting techniques and models, including statistical and time series models, machine learning models, deep learning models, probabilistic forecasting models, and data-driven feature engineering and selection. In addition, applications of PV energy production forecasting in grid integration and energy market operations such as load balancing, generation planning, transmission and distribution planning, energy storage optimisation, bidding strategies, and renewable energy certificate trading are presented. Furthermore, challenges persist in PV power generation forecasting are presented, including data quality and availability, model uncertainty, forecast horizon and time resolution, and integration of multiple data sources and models. Finally, this article focusses on providing insight into the current PV energy production forecasting landscape and guiding future research and development efforts to address these challenges, enhance forecasting capabilities, and facilitate the global transition to a more sustainable and low-carbon energy future.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC I I&CPS Europe) : conference Proceedings : 6- 9 June, 2023, Madrid, Spain
ISBN
979-8-3503-4743-2
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
"nečíslovano"
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Madrid
Datum konání akce
6. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—