Enhanced Forecasting Accuracy of a Grid-Connected Photovoltaic Power Plant: A Novel Approach Using Hybrid Variational Mode Decomposition and a CNN-LSTM Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21720%2F24%3A00376067" target="_blank" >RIV/68407700:21720/24:00376067 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/en17071781" target="_blank" >https://doi.org/10.3390/en17071781</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/en17071781" target="_blank" >10.3390/en17071781</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhanced Forecasting Accuracy of a Grid-Connected Photovoltaic Power Plant: A Novel Approach Using Hybrid Variational Mode Decomposition and a CNN-LSTM Model
Popis výsledku v původním jazyce
Renewable energies have become pivotal in the global energy landscape. Their adoption is crucial for phasing out fossil fuels and promoting environmentally friendly energy solutions. In recent years, the energy management system (EMS) concept has emerged to manage the power grid. EMS optimizes electric grid operations through advanced metering, automation, and communication technologies. A critical component of EMS is power forecasting, which facilitates precise energy grid scheduling. This research paper introduces a deep learning hybrid model employing convolutional neural network–long short-term memory (CNN-LSTM) for short-term photovoltaic (PV) solar energy forecasting. The proposed method integrates the variational mode decomposition (VMD) algorithm with the CNN-LSTM model to predict PV power output from a solar farm in Boussada, Algeria, spanning 1 January 2019, to 31 December 2020. The performance of the developed model is benchmarked against other deep learning models across various time horizons (15, 30, and 60 min): variational mode decomposition–convolutional neural network (VMD-CNN), variational mode decomposition–long short-term memory (VMD-LSTM), and convolutional neural network–long short-term memory (CNN-LSTM), which provide a comprehensive evaluation. Our findings demonstrate that the developed model outperforms other methods, offering promising results in solar power forecasting. This research contributes to the primary goal of enhancing EMS by providing accurate solar energy forecasts.
Název v anglickém jazyce
Enhanced Forecasting Accuracy of a Grid-Connected Photovoltaic Power Plant: A Novel Approach Using Hybrid Variational Mode Decomposition and a CNN-LSTM Model
Popis výsledku anglicky
Renewable energies have become pivotal in the global energy landscape. Their adoption is crucial for phasing out fossil fuels and promoting environmentally friendly energy solutions. In recent years, the energy management system (EMS) concept has emerged to manage the power grid. EMS optimizes electric grid operations through advanced metering, automation, and communication technologies. A critical component of EMS is power forecasting, which facilitates precise energy grid scheduling. This research paper introduces a deep learning hybrid model employing convolutional neural network–long short-term memory (CNN-LSTM) for short-term photovoltaic (PV) solar energy forecasting. The proposed method integrates the variational mode decomposition (VMD) algorithm with the CNN-LSTM model to predict PV power output from a solar farm in Boussada, Algeria, spanning 1 January 2019, to 31 December 2020. The performance of the developed model is benchmarked against other deep learning models across various time horizons (15, 30, and 60 min): variational mode decomposition–convolutional neural network (VMD-CNN), variational mode decomposition–long short-term memory (VMD-LSTM), and convolutional neural network–long short-term memory (CNN-LSTM), which provide a comprehensive evaluation. Our findings demonstrate that the developed model outperforms other methods, offering promising results in solar power forecasting. This research contributes to the primary goal of enhancing EMS by providing accurate solar energy forecasts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004617" target="_blank" >EH22_008/0004617: Konverze a skladování energie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energies
ISSN
1996-1073
e-ISSN
1996-1073
Svazek periodika
17
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
21
Strana od-do
1-21
Kód UT WoS článku
001200802700001
EID výsledku v databázi Scopus
2-s2.0-85190279478