Advancing short-term solar irradiance forecasting accuracy through a hybrid deep learning approach with Bayesian optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255370" target="_blank" >RIV/61989100:27240/24:10255370 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/24:10255370
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2590123024007163" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2590123024007163</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rineng.2024.102461" target="_blank" >10.1016/j.rineng.2024.102461</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advancing short-term solar irradiance forecasting accuracy through a hybrid deep learning approach with Bayesian optimization
Popis výsledku v původním jazyce
The optimization of solar energy integration into the power grid relies heavily on accurate forecasting of solar irradiance. In this study, a new approach for short-term solar irradiance forecasting is introduced. This method combines Bayesian Optimized Attention-Dilated Long Short-Term Memory and Savitzky-Golay filtering. The methodology is implemented to analyze data obtained from a solar irradiance probe situated in Douala, Cameroon. Initially, the unprocessed data is augmented by integrating distinctive solar irradiation variables, and the Savitzky-Golay filter with Bayesian Optimization is used to enhance its quality. Subsequently, multiple deep learning models, including Long Short-Term Memory, Bidirectional Long Short-Term Memory, Artificial Neural Networks, Bidirectional Long Short-Term Memory with Additive Attention Mechanism, and Bidirectional Long Short-Term Memory with Additive Attention Mechanism and Dilated Convolutional layers, are trained and evaluated. Out of all the models considered, the proposed approach, which combines the attention mechanism and dilated convolutional layers, demonstrates exceptional performance with the best convergence and accuracy in forecasting. Bayesian Optimization is further utilized to fine -tune the polynomial and window size of the Savitzky-Golay filter and optimize the hyperparameters of the deep learning models. The results show a Symmetric Mean Absolute Percentage Error of 0.6564, a Normalized Root Mean Square Error of 0.2250, and a Root Mean Square Error of 22.9445, surpassing previous studies in the literature. Empirical findings highlight the effectiveness of the proposed methodology in enhancing the accuracy of short-term solar irradiance forecasting. This research contributes to the field by introducing novel data pre-processing techniques, a hybrid deep learning architecture, and the development of a benchmark dataset. These advancements benefit both researchers and solar plant managers, improving solar irradiance forecasting capabilities.
Název v anglickém jazyce
Advancing short-term solar irradiance forecasting accuracy through a hybrid deep learning approach with Bayesian optimization
Popis výsledku anglicky
The optimization of solar energy integration into the power grid relies heavily on accurate forecasting of solar irradiance. In this study, a new approach for short-term solar irradiance forecasting is introduced. This method combines Bayesian Optimized Attention-Dilated Long Short-Term Memory and Savitzky-Golay filtering. The methodology is implemented to analyze data obtained from a solar irradiance probe situated in Douala, Cameroon. Initially, the unprocessed data is augmented by integrating distinctive solar irradiation variables, and the Savitzky-Golay filter with Bayesian Optimization is used to enhance its quality. Subsequently, multiple deep learning models, including Long Short-Term Memory, Bidirectional Long Short-Term Memory, Artificial Neural Networks, Bidirectional Long Short-Term Memory with Additive Attention Mechanism, and Bidirectional Long Short-Term Memory with Additive Attention Mechanism and Dilated Convolutional layers, are trained and evaluated. Out of all the models considered, the proposed approach, which combines the attention mechanism and dilated convolutional layers, demonstrates exceptional performance with the best convergence and accuracy in forecasting. Bayesian Optimization is further utilized to fine -tune the polynomial and window size of the Savitzky-Golay filter and optimize the hyperparameters of the deep learning models. The results show a Symmetric Mean Absolute Percentage Error of 0.6564, a Normalized Root Mean Square Error of 0.2250, and a Root Mean Square Error of 22.9445, surpassing previous studies in the literature. Empirical findings highlight the effectiveness of the proposed methodology in enhancing the accuracy of short-term solar irradiance forecasting. This research contributes to the field by introducing novel data pre-processing techniques, a hybrid deep learning architecture, and the development of a benchmark dataset. These advancements benefit both researchers and solar plant managers, improving solar irradiance forecasting capabilities.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Results in Engineering
ISSN
2590-1230
e-ISSN
2590-1230
Svazek periodika
23
Číslo periodika v rámci svazku
September 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
nestránkováno
Kód UT WoS článku
001261815400001
EID výsledku v databázi Scopus
2-s2.0-85196787654