Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Gastronomic Consumers’ Attitudes Toward AI-Generated Food Images: Exploring Different Perceptions Based on Generational Segmentation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F24%3A100618" target="_blank" >RIV/60460709:41110/24:100618 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link-springer-com.infozdroje.czu.cz/chapter/10.1007/978-981-97-1552-7_8" target="_blank" >https://link-springer-com.infozdroje.czu.cz/chapter/10.1007/978-981-97-1552-7_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-97-1552-7_8" target="_blank" >10.1007/978-981-97-1552-7_8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Gastronomic Consumers’ Attitudes Toward AI-Generated Food Images: Exploring Different Perceptions Based on Generational Segmentation

  • Popis výsledku v původním jazyce

    The paper aims to identify the differences in attitudes of particular generational segments of gastronomy consumers toward AI-generated food marketing images. DALL-E engine was used to generate 56 images of dishes, which were initially ranked by professional chefs and reduced to a final set of 18 images used for four photo-elicitation focus groups. Qualitative evaluation of the data showed three topics to be crucial during the discussion of agents: the ability to recognize the meal or ingredient (M/I-R), preference toward presented food, and ability to recognize pictures as artificial (AR). There were significant differences in the meaning construction of such topics based on particular generational segments, i.e., Baby Boomers (BB), Generation X (GX), Generation Y (GY), or Generation Z (GZ). Findings show that GZ manifested the highest M/I-R scores but the lowest AR scores. GZ also preferred dishes for which M/I-R was manifested over those with missing M/I-R. GY and GX showed lower M/I-R scores as well as low AR scores. However, GY and GX showed a will to experiment by choosing dishes independently on M/I-R manifestation. BB segment showed the lowest M/I-R scores, but it was the only segment able to achieve high AR scores. As for the GZ, the BB segment also preferred dishes with M/I-R manifestation over the unidentified dishes. The results present marketing implications, especially since the BB segment is the most (and only) suspicious group toward AI-generated food images as it tends to elaborate deeper analysis of the presented images, leading to increased artificiality recognition.

  • Název v anglickém jazyce

    Gastronomic Consumers’ Attitudes Toward AI-Generated Food Images: Exploring Different Perceptions Based on Generational Segmentation

  • Popis výsledku anglicky

    The paper aims to identify the differences in attitudes of particular generational segments of gastronomy consumers toward AI-generated food marketing images. DALL-E engine was used to generate 56 images of dishes, which were initially ranked by professional chefs and reduced to a final set of 18 images used for four photo-elicitation focus groups. Qualitative evaluation of the data showed three topics to be crucial during the discussion of agents: the ability to recognize the meal or ingredient (M/I-R), preference toward presented food, and ability to recognize pictures as artificial (AR). There were significant differences in the meaning construction of such topics based on particular generational segments, i.e., Baby Boomers (BB), Generation X (GX), Generation Y (GY), or Generation Z (GZ). Findings show that GZ manifested the highest M/I-R scores but the lowest AR scores. GZ also preferred dishes for which M/I-R was manifested over those with missing M/I-R. GY and GX showed lower M/I-R scores as well as low AR scores. However, GY and GX showed a will to experiment by choosing dishes independently on M/I-R manifestation. BB segment showed the lowest M/I-R scores, but it was the only segment able to achieve high AR scores. As for the GZ, the BB segment also preferred dishes with M/I-R manifestation over the unidentified dishes. The results present marketing implications, especially since the BB segment is the most (and only) suspicious group toward AI-generated food images as it tends to elaborate deeper analysis of the presented images, leading to increased artificiality recognition.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    50900 - Other social sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Smart Innovation, Systems and Technologies

  • ISSN

    2190-3018

  • e-ISSN

    2190-3018

  • Svazek periodika

    386

  • Číslo periodika v rámci svazku

    Neuvedeno

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

    105-119

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85196847194