Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A decision support system for herd health management for dairy farms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F24%3A100868" target="_blank" >RIV/60460709:41110/24:100868 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60460709:41210/24:100868

  • Výsledek na webu

    <a href="https://cjas.agriculturejournals.cz/pdfs/cjs/2024/12/04.pdf" target="_blank" >https://cjas.agriculturejournals.cz/pdfs/cjs/2024/12/04.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.17221/178/2024-CJAS" target="_blank" >10.17221/178/2024-CJAS</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A decision support system for herd health management for dairy farms

  • Popis výsledku v původním jazyce

    Industrial dairy farms boast highly advanced health monitoring and disease diagnosis systems. But without easily accessible, user-friendly web platforms for real-time decision-making, most dairy farmers cannot proactively manage herd health management and optimize treatments based on disease prediction and prevention. To bridge this gap, we have developed a web application of a Decision support system (DSS) for dairy health management based on machine learning. The system architecture combines a Flask backend with a React frontend and scalable cloud data storage and includes preprocessing, data integration, predictive modelling, and cost analysis. DSS forecasts herd diseases with an accuracy 6.66 mean absolute error and 2.35 median absolute deviation across predictions. Its core predictive capabilities rely on long short-term memory (LSTM) neural networks to forecast disease progression from historical records and on a linear trend model to project cuts in treatment costs. The system calculates medication dosages and cost per disease, streamlines supplier selection, and simulates various treatment scenarios, thereby identifying high-cost diseases with potential savings. In other words, this DSS application processes disease and treatment data by incorporating veterinary records into advanced data analytics and neural networks, thereby predicting diseases, optimizing disease prevention and treatment strategies, and reducing costs. As such, this DSS application provides dairy farmers with a tool for strategic decision-making, veterinary treatment planning, and cost-effective disease management towards improving animal welfare and increasing milk yield.

  • Název v anglickém jazyce

    A decision support system for herd health management for dairy farms

  • Popis výsledku anglicky

    Industrial dairy farms boast highly advanced health monitoring and disease diagnosis systems. But without easily accessible, user-friendly web platforms for real-time decision-making, most dairy farmers cannot proactively manage herd health management and optimize treatments based on disease prediction and prevention. To bridge this gap, we have developed a web application of a Decision support system (DSS) for dairy health management based on machine learning. The system architecture combines a Flask backend with a React frontend and scalable cloud data storage and includes preprocessing, data integration, predictive modelling, and cost analysis. DSS forecasts herd diseases with an accuracy 6.66 mean absolute error and 2.35 median absolute deviation across predictions. Its core predictive capabilities rely on long short-term memory (LSTM) neural networks to forecast disease progression from historical records and on a linear trend model to project cuts in treatment costs. The system calculates medication dosages and cost per disease, streamlines supplier selection, and simulates various treatment scenarios, thereby identifying high-cost diseases with potential savings. In other words, this DSS application processes disease and treatment data by incorporating veterinary records into advanced data analytics and neural networks, thereby predicting diseases, optimizing disease prevention and treatment strategies, and reducing costs. As such, this DSS application provides dairy farmers with a tool for strategic decision-making, veterinary treatment planning, and cost-effective disease management towards improving animal welfare and increasing milk yield.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40200 - Animal and Dairy science

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Czech Journal of Animal Science

  • ISSN

    1212-1819

  • e-ISSN

    1805-9309

  • Svazek periodika

    69

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    14

  • Strana od-do

    502-515

  • Kód UT WoS článku

    001311127800001

  • EID výsledku v databázi Scopus

    2-s2.0-85213414199