A decision support system for herd health management for dairy farms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F24%3A100868" target="_blank" >RIV/60460709:41110/24:100868 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41210/24:100868
Výsledek na webu
<a href="https://cjas.agriculturejournals.cz/pdfs/cjs/2024/12/04.pdf" target="_blank" >https://cjas.agriculturejournals.cz/pdfs/cjs/2024/12/04.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17221/178/2024-CJAS" target="_blank" >10.17221/178/2024-CJAS</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A decision support system for herd health management for dairy farms
Popis výsledku v původním jazyce
Industrial dairy farms boast highly advanced health monitoring and disease diagnosis systems. But without easily accessible, user-friendly web platforms for real-time decision-making, most dairy farmers cannot proactively manage herd health management and optimize treatments based on disease prediction and prevention. To bridge this gap, we have developed a web application of a Decision support system (DSS) for dairy health management based on machine learning. The system architecture combines a Flask backend with a React frontend and scalable cloud data storage and includes preprocessing, data integration, predictive modelling, and cost analysis. DSS forecasts herd diseases with an accuracy 6.66 mean absolute error and 2.35 median absolute deviation across predictions. Its core predictive capabilities rely on long short-term memory (LSTM) neural networks to forecast disease progression from historical records and on a linear trend model to project cuts in treatment costs. The system calculates medication dosages and cost per disease, streamlines supplier selection, and simulates various treatment scenarios, thereby identifying high-cost diseases with potential savings. In other words, this DSS application processes disease and treatment data by incorporating veterinary records into advanced data analytics and neural networks, thereby predicting diseases, optimizing disease prevention and treatment strategies, and reducing costs. As such, this DSS application provides dairy farmers with a tool for strategic decision-making, veterinary treatment planning, and cost-effective disease management towards improving animal welfare and increasing milk yield.
Název v anglickém jazyce
A decision support system for herd health management for dairy farms
Popis výsledku anglicky
Industrial dairy farms boast highly advanced health monitoring and disease diagnosis systems. But without easily accessible, user-friendly web platforms for real-time decision-making, most dairy farmers cannot proactively manage herd health management and optimize treatments based on disease prediction and prevention. To bridge this gap, we have developed a web application of a Decision support system (DSS) for dairy health management based on machine learning. The system architecture combines a Flask backend with a React frontend and scalable cloud data storage and includes preprocessing, data integration, predictive modelling, and cost analysis. DSS forecasts herd diseases with an accuracy 6.66 mean absolute error and 2.35 median absolute deviation across predictions. Its core predictive capabilities rely on long short-term memory (LSTM) neural networks to forecast disease progression from historical records and on a linear trend model to project cuts in treatment costs. The system calculates medication dosages and cost per disease, streamlines supplier selection, and simulates various treatment scenarios, thereby identifying high-cost diseases with potential savings. In other words, this DSS application processes disease and treatment data by incorporating veterinary records into advanced data analytics and neural networks, thereby predicting diseases, optimizing disease prevention and treatment strategies, and reducing costs. As such, this DSS application provides dairy farmers with a tool for strategic decision-making, veterinary treatment planning, and cost-effective disease management towards improving animal welfare and increasing milk yield.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40200 - Animal and Dairy science
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Czech Journal of Animal Science
ISSN
1212-1819
e-ISSN
1805-9309
Svazek periodika
69
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
14
Strana od-do
502-515
Kód UT WoS článku
001311127800001
EID výsledku v databázi Scopus
2-s2.0-85213414199