Discrete Homogeneous and Non-Homogeneous Markov Chains Enhance Predictive Modelling for Dairy Cow Diseases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F24%3A98108" target="_blank" >RIV/60460709:41110/24:98108 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41210/24:98108
Výsledek na webu
<a href="https://www.mdpi.com/2076-2615/14/17/2542" target="_blank" >https://www.mdpi.com/2076-2615/14/17/2542</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ani14172542" target="_blank" >10.3390/ani14172542</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Discrete Homogeneous and Non-Homogeneous Markov Chains Enhance Predictive Modelling for Dairy Cow Diseases
Popis výsledku v původním jazyce
Modelling and predicting dairy cow diseases empowers farmers with valuable information for herd health management, thereby decreasing costs and increasing profits. For this purpose, predictive models were developed based on machine learning algorithms. However, machine-learning based approaches require the development of a specific model for each disease, and their consistency is limited by low farm data availability. To overcome this lack of complete and accurate data, we developed a predictive model based on discrete Homogeneous and Non-homogeneous Markov chains. After aggregating data into categories, we developed a method for defining the adequate number of Markov chain states. Subsequently, we selected the best prediction model through Chebyshev distance minimization. For 14 of 19 diseases, less than 15% maximum differences were measured between the last month of actual and predicted disease data. This model can be easily implemented in low-tech dairy farms to project costs with antibiotics and other treatments. Furthermore, the model’s adaptability allows it to be extended to other disease types or conditions with minimal adjustments. Therefore, including this predictive model for dairy cow diseases in decision support systems may enhance herd health management and streamline the design of evidence-based farming strategies.
Název v anglickém jazyce
Discrete Homogeneous and Non-Homogeneous Markov Chains Enhance Predictive Modelling for Dairy Cow Diseases
Popis výsledku anglicky
Modelling and predicting dairy cow diseases empowers farmers with valuable information for herd health management, thereby decreasing costs and increasing profits. For this purpose, predictive models were developed based on machine learning algorithms. However, machine-learning based approaches require the development of a specific model for each disease, and their consistency is limited by low farm data availability. To overcome this lack of complete and accurate data, we developed a predictive model based on discrete Homogeneous and Non-homogeneous Markov chains. After aggregating data into categories, we developed a method for defining the adequate number of Markov chain states. Subsequently, we selected the best prediction model through Chebyshev distance minimization. For 14 of 19 diseases, less than 15% maximum differences were measured between the last month of actual and predicted disease data. This model can be easily implemented in low-tech dairy farms to project costs with antibiotics and other treatments. Furthermore, the model’s adaptability allows it to be extended to other disease types or conditions with minimal adjustments. Therefore, including this predictive model for dairy cow diseases in decision support systems may enhance herd health management and streamline the design of evidence-based farming strategies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40101 - Agriculture
Návaznosti výsledku
Projekt
<a href="/cs/project/QK22010270" target="_blank" >QK22010270: Optimalizace řízení individuální reprodukční výkonnosti dojeného skotu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Animals
ISSN
2076-2615
e-ISSN
2076-2615
Svazek periodika
14
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
001311127800001
EID výsledku v databázi Scopus
2-s2.0-85203653836