Comparing Different Data Preprocessing Methods for Monitoring Soil Heavy Metals Based on Soil Spectral Features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F15%3A68208" target="_blank" >RIV/60460709:41210/15:68208 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60076658:12520/15:43888842
Výsledek na webu
<a href="http://dx.doi.org/10.17221/113/2015-SWR" target="_blank" >http://dx.doi.org/10.17221/113/2015-SWR</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17221/113/2015-SWR" target="_blank" >10.17221/113/2015-SWR</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing Different Data Preprocessing Methods for Monitoring Soil Heavy Metals Based on Soil Spectral Features
Popis výsledku v původním jazyce
The lands near mining industries in the Czech Republic are subjected to soil pollution with heavy metals. Excessive heavy metal concentrations in soils not only dramatically impact the soil quality, but also due to their persistent nature and indefinitebiological half-lives, potentially toxic metals can accumulate in the food chain and can eventually endanger human health. Monitoring and spatial information of these elements require a large number of samples and cumbersome and time-consuming laboratorymeasurements. A faster method has been developed based on a multivariate calibration procedure using support vector machine regression (SVMR) with cross-validation, to establish a relationship between reflectance spectra in the visible-near infrared (Vis-NIR) region and concentration of Mn, Cu, Cd, Zn, and Pb in soil. Spectral preprocessing methods, first and second derivatives (FD and SD), standard normal variate (SNV), multiplicative scatter correction (MSC), and continuum removal (CR
Název v anglickém jazyce
Comparing Different Data Preprocessing Methods for Monitoring Soil Heavy Metals Based on Soil Spectral Features
Popis výsledku anglicky
The lands near mining industries in the Czech Republic are subjected to soil pollution with heavy metals. Excessive heavy metal concentrations in soils not only dramatically impact the soil quality, but also due to their persistent nature and indefinitebiological half-lives, potentially toxic metals can accumulate in the food chain and can eventually endanger human health. Monitoring and spatial information of these elements require a large number of samples and cumbersome and time-consuming laboratorymeasurements. A faster method has been developed based on a multivariate calibration procedure using support vector machine regression (SVMR) with cross-validation, to establish a relationship between reflectance spectra in the visible-near infrared (Vis-NIR) region and concentration of Mn, Cu, Cd, Zn, and Pb in soil. Spectral preprocessing methods, first and second derivatives (FD and SD), standard normal variate (SNV), multiplicative scatter correction (MSC), and continuum removal (CR
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DF - Pedologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Soil and Water Research
ISSN
1801-5395
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
218-227
Kód UT WoS článku
000365457100003
EID výsledku v databázi Scopus
—