Comparison of multivariate methods for arsenic estimation and mapping in floodplain soil via portable X-ray fluorescence spectroscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F21%3A82486" target="_blank" >RIV/60460709:41210/21:82486 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0016706120325477?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0016706120325477?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geoderma.2020.114792" target="_blank" >10.1016/j.geoderma.2020.114792</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of multivariate methods for arsenic estimation and mapping in floodplain soil via portable X-ray fluorescence spectroscopy
Popis výsledku v původním jazyce
Rapid, inexpensive, and equally reliable estimates of potentially toxic elements are a necessity, portable X ray fluorescence (pXRF) spectrometry is a handy tool to help achieve such. The current study sought to compare multiple linear regression with three regularized regression models Ridge, Lasso, and ElasticNet ENET for the estimation of total arsenic As using pXRF datasets in polluted temperate floodplain soils of Příbram, Czech Republic. A total of 158 (0-25 cm) floodplain surface soil samples were collected from a specific site in Příbram. Models were evaluated separately and compared based on mean absolute error (MAE), root mean squared error (RMSE) and the coefficient of determination (R2). All four models were able to predict As with good accuracy (MAE and RMSE values of 0,02 and 0,03, respectively, and R2 values ranging from 0,94 to 0,95). As measured via pXRF as well as predicted via the four regression models produced similar spatial variability as shown by the standard laboratory-measur
Název v anglickém jazyce
Comparison of multivariate methods for arsenic estimation and mapping in floodplain soil via portable X-ray fluorescence spectroscopy
Popis výsledku anglicky
Rapid, inexpensive, and equally reliable estimates of potentially toxic elements are a necessity, portable X ray fluorescence (pXRF) spectrometry is a handy tool to help achieve such. The current study sought to compare multiple linear regression with three regularized regression models Ridge, Lasso, and ElasticNet ENET for the estimation of total arsenic As using pXRF datasets in polluted temperate floodplain soils of Příbram, Czech Republic. A total of 158 (0-25 cm) floodplain surface soil samples were collected from a specific site in Příbram. Models were evaluated separately and compared based on mean absolute error (MAE), root mean squared error (RMSE) and the coefficient of determination (R2). All four models were able to predict As with good accuracy (MAE and RMSE values of 0,02 and 0,03, respectively, and R2 values ranging from 0,94 to 0,95). As measured via pXRF as well as predicted via the four regression models produced similar spatial variability as shown by the standard laboratory-measur
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40104 - Soil science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geoderma
ISSN
0016-7061
e-ISSN
1872-6259
Svazek periodika
384
Číslo periodika v rámci svazku
feb
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
0-0
Kód UT WoS článku
000594244300004
EID výsledku v databázi Scopus
2-s2.0-85096657235