Prediction of the concentration of cadmium in agricultural soil in the Czech Republic using legacy data, preferential sampling, Sentinel-2, Landsat-8, and ensemble models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F23%3A97374" target="_blank" >RIV/60460709:41210/23:97374 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0301479722027670" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0301479722027670</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jenvman.2022.117194" target="_blank" >10.1016/j.jenvman.2022.117194</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of the concentration of cadmium in agricultural soil in the Czech Republic using legacy data, preferential sampling, Sentinel-2, Landsat-8, and ensemble models
Popis výsledku v původním jazyce
The current study assesses and predicts cadmium (Cd) concentration in agricultural soil using two Cd datasets, namely legacy data (LD) and preferential sampling-legacy data (PS-LD), along with four streams of auxiliary datasets extracted from Sentinel-2 (S2) and Landsat-8 (L8) bands. The study was divided into two contexts: Cd prediction in agricultural soil using LD, ensemble models, 10 and 20 m spatial resolution of S2 and L8 (context 1), and Cd prediction in agricultural soil using PS-LD, ensemble models and 10 and 20 m spatial resolution of S2 and L8 (context 2). In context 1, ensemble 1, L8 with PS-LD was the cumulative optimal approach that predicted Cd in agricultural soil with a higher R2 value of 0.76, root mean square error (RMSE) of 0.66, mean absolute error (MAE) of 0.35, and median absolute error (MdAE) of 0.13. However, with R2 = 0.78, RMSE = 0.63, MAE = 0.34, and MdAE = 0.15, ensemble 1, S2 of PS-LD was the best prediction approach in predicting Cd concentration in agricultural soil in context 2. Overall, the predictions from both contexts indicated that ensemble 1 of S2 combined with PS-LD was the most appropriate and best model for Cd prediction in agricultural soil. The modeling approaches' uncertainty in both contexts was assessed using ensemble-sequential gaussian simulation (EnSGS), which revealed that the degree of uncertainty propagated in the study area was within 5% in both contexts. The combination of the PS dataset and the LD along with ensemble models and the remote sensing dataset, produced promising results. Nonetheless, the results demonstrated that the 20 m spatial resolution band dataset used in the prediction of Cd in agricultural soil outperformed the 10 m spatial resolution. When PS is combined with LD, an appropriate modeling approach, and a well-correlated remote sensing dataset are used, good results are obtained.
Název v anglickém jazyce
Prediction of the concentration of cadmium in agricultural soil in the Czech Republic using legacy data, preferential sampling, Sentinel-2, Landsat-8, and ensemble models
Popis výsledku anglicky
The current study assesses and predicts cadmium (Cd) concentration in agricultural soil using two Cd datasets, namely legacy data (LD) and preferential sampling-legacy data (PS-LD), along with four streams of auxiliary datasets extracted from Sentinel-2 (S2) and Landsat-8 (L8) bands. The study was divided into two contexts: Cd prediction in agricultural soil using LD, ensemble models, 10 and 20 m spatial resolution of S2 and L8 (context 1), and Cd prediction in agricultural soil using PS-LD, ensemble models and 10 and 20 m spatial resolution of S2 and L8 (context 2). In context 1, ensemble 1, L8 with PS-LD was the cumulative optimal approach that predicted Cd in agricultural soil with a higher R2 value of 0.76, root mean square error (RMSE) of 0.66, mean absolute error (MAE) of 0.35, and median absolute error (MdAE) of 0.13. However, with R2 = 0.78, RMSE = 0.63, MAE = 0.34, and MdAE = 0.15, ensemble 1, S2 of PS-LD was the best prediction approach in predicting Cd concentration in agricultural soil in context 2. Overall, the predictions from both contexts indicated that ensemble 1 of S2 combined with PS-LD was the most appropriate and best model for Cd prediction in agricultural soil. The modeling approaches' uncertainty in both contexts was assessed using ensemble-sequential gaussian simulation (EnSGS), which revealed that the degree of uncertainty propagated in the study area was within 5% in both contexts. The combination of the PS dataset and the LD along with ensemble models and the remote sensing dataset, produced promising results. Nonetheless, the results demonstrated that the 20 m spatial resolution band dataset used in the prediction of Cd in agricultural soil outperformed the 10 m spatial resolution. When PS is combined with LD, an appropriate modeling approach, and a well-correlated remote sensing dataset are used, good results are obtained.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40104 - Soil science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Environmental Management
ISSN
0301-4797
e-ISSN
0301-4797
Svazek periodika
330
Číslo periodika v rámci svazku
MAR 15 2023
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000920684500001
EID výsledku v databázi Scopus
2-s2.0-85145686684