Estimating Atterberg limits of soils from reflectance spectroscopy and pedotransfer functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F21%3A85572" target="_blank" >RIV/60460709:41210/21:85572 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0016706121003803" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0016706121003803</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geoderma.2021.115300" target="_blank" >10.1016/j.geoderma.2021.115300</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimating Atterberg limits of soils from reflectance spectroscopy and pedotransfer functions
Popis výsledku v původním jazyce
Attenberg limits are broadly used for engineering and geology purposes as well as in agricultural and environmental applications. Laboratory methods used for their determination are, however, laborious, destructive and tool dependent. The aim of this study was to test the feasibility of using visible near infrared spectroscopy as a fast and accurate alternative to the conventional measurement of Atterberg limits and the PI for 229 geographically diverse soil samples originating from 24 countries. Three types of calibration techniques including Partial Least Squares (PLS) regression, Artificial Neural Networks (ANN) and Support Vector Machines (SVM) were applied to the spectral data. The performance of the best visNIRS models was validated using 45 independent samples and compared with two existing and one newly developed pedotransfer functions (PTF). The application of SVM yielded marginally better predictive ability than PLS and ANN for all modelled properties. The SVM models estimated LL, PL, and
Název v anglickém jazyce
Estimating Atterberg limits of soils from reflectance spectroscopy and pedotransfer functions
Popis výsledku anglicky
Attenberg limits are broadly used for engineering and geology purposes as well as in agricultural and environmental applications. Laboratory methods used for their determination are, however, laborious, destructive and tool dependent. The aim of this study was to test the feasibility of using visible near infrared spectroscopy as a fast and accurate alternative to the conventional measurement of Atterberg limits and the PI for 229 geographically diverse soil samples originating from 24 countries. Three types of calibration techniques including Partial Least Squares (PLS) regression, Artificial Neural Networks (ANN) and Support Vector Machines (SVM) were applied to the spectral data. The performance of the best visNIRS models was validated using 45 independent samples and compared with two existing and one newly developed pedotransfer functions (PTF). The application of SVM yielded marginally better predictive ability than PLS and ANN for all modelled properties. The SVM models estimated LL, PL, and
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40104 - Soil science
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geoderma
ISSN
0016-7061
e-ISSN
1872-6259
Svazek periodika
402
Číslo periodika v rámci svazku
nov
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
0-0
Kód UT WoS článku
000688581600001
EID výsledku v databázi Scopus
2-s2.0-85112433450