Digital mapping of soil organic carbon using remote sensing data: A systematic review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F23%3A97356" target="_blank" >RIV/60460709:41210/23:97356 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0341816223005003" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0341816223005003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.catena.2023.107409" target="_blank" >10.1016/j.catena.2023.107409</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Digital mapping of soil organic carbon using remote sensing data: A systematic review
Popis výsledku v původním jazyce
Soil organic carbon (SOC) has attracted a lot of attention in the soil science community. Freely available remote sensing data combined with advanced digital soil mapping (DSM) techniques has led to a better understanding and management of SOC. This paper has considered the published literature with a focus on digital mapping of SOC using remote sensing data within 2010 to 2023 intervals. The objective was to consider all the important aspects of SOC prediction and mapping, including different land-use types, DSM algorithms, environmental variables, and remote sensing data sources. According to this review conducted on the 217 papers, cropland was the most popular type of land use. Regarding the DSM algorithms, random forest (RF) appeared in the largest number of studies. The terrain and spectral variables derived from the digital elevation model (DEM) and remote sensing images, were the highest demanding among all those used as input predictors. In addition, satellite platforms provided the largest portion of the remote sensing data used for the calibration of DSM models. This review provides quantitative insight into recent trends of SOC digital mapping using remote sensing technology while suggesting some directions for future development of the topic.
Název v anglickém jazyce
Digital mapping of soil organic carbon using remote sensing data: A systematic review
Popis výsledku anglicky
Soil organic carbon (SOC) has attracted a lot of attention in the soil science community. Freely available remote sensing data combined with advanced digital soil mapping (DSM) techniques has led to a better understanding and management of SOC. This paper has considered the published literature with a focus on digital mapping of SOC using remote sensing data within 2010 to 2023 intervals. The objective was to consider all the important aspects of SOC prediction and mapping, including different land-use types, DSM algorithms, environmental variables, and remote sensing data sources. According to this review conducted on the 217 papers, cropland was the most popular type of land use. Regarding the DSM algorithms, random forest (RF) appeared in the largest number of studies. The terrain and spectral variables derived from the digital elevation model (DEM) and remote sensing images, were the highest demanding among all those used as input predictors. In addition, satellite platforms provided the largest portion of the remote sensing data used for the calibration of DSM models. This review provides quantitative insight into recent trends of SOC digital mapping using remote sensing technology while suggesting some directions for future development of the topic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40104 - Soil science
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Catena
ISSN
0341-8162
e-ISSN
0341-8162
Svazek periodika
232
Číslo periodika v rámci svazku
NOV 2023
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
001046820400001
EID výsledku v databázi Scopus
2-s2.0-85166027232