Digital soil mapping using machine learning-based methods to predict soil organic carbon in two different districts in the Czech Republic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F24%3A100048" target="_blank" >RIV/60460709:41210/24:100048 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.17221/119/2023-SWR" target="_blank" >https://doi.org/10.17221/119/2023-SWR</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17221/119/2023-SWR" target="_blank" >10.17221/119/2023-SWR</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Digital soil mapping using machine learning-based methods to predict soil organic carbon in two different districts in the Czech Republic
Popis výsledku v původním jazyce
Soil organic carbon (SOC) is an important soil characteristic as well as a way how to mitigate climate change. Information on its content and spatial distribution is thus crucial. Digital soil mapping (DSM) is a suitable way to evaluate spatial distribution of soil properties thanks to its ability to obtain accurate information about soil. This research aims to apply machine learning algorithms using various environmental covariates to generate digital SOC maps for mineral top-soils in the Liberec and Domažlice districts, located in the Czech Republic. The soil class, land cover, and geology maps as well as terrain covariates extracted from the digital elevation model and remote sensing data were used as covariates in modelling. The spatial distribution of SOC was predicted based on its relationships with covariates using random forest (RF), cubist, and quantile random forest (QRF) models. Results of the RF model showed that land cover (vegetation) and elevation were the most important environmental variables in the SOC prediction in both districts. The RF had better efficiency and accuracy than the cubist and QRF to predict SOC in both districts. The greatest R2 value (0.63) was observed in the Domažlice district using the RF model. However, cubist and QRF showed appropriate performance in both districts, too.
Název v anglickém jazyce
Digital soil mapping using machine learning-based methods to predict soil organic carbon in two different districts in the Czech Republic
Popis výsledku anglicky
Soil organic carbon (SOC) is an important soil characteristic as well as a way how to mitigate climate change. Information on its content and spatial distribution is thus crucial. Digital soil mapping (DSM) is a suitable way to evaluate spatial distribution of soil properties thanks to its ability to obtain accurate information about soil. This research aims to apply machine learning algorithms using various environmental covariates to generate digital SOC maps for mineral top-soils in the Liberec and Domažlice districts, located in the Czech Republic. The soil class, land cover, and geology maps as well as terrain covariates extracted from the digital elevation model and remote sensing data were used as covariates in modelling. The spatial distribution of SOC was predicted based on its relationships with covariates using random forest (RF), cubist, and quantile random forest (QRF) models. Results of the RF model showed that land cover (vegetation) and elevation were the most important environmental variables in the SOC prediction in both districts. The RF had better efficiency and accuracy than the cubist and QRF to predict SOC in both districts. The greatest R2 value (0.63) was observed in the Domažlice district using the RF model. However, cubist and QRF showed appropriate performance in both districts, too.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40104 - Soil science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Soil and Water Research
ISSN
1801-5395
e-ISSN
1801-5395
Svazek periodika
19
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
18
Strana od-do
32-49
Kód UT WoS článku
001148213900001
EID výsledku v databázi Scopus
2-s2.0-85185780012