Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Digital soil mapping using machine learning-based methods to predict soil organic carbon in two different districts in the Czech Republic

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F24%3A100048" target="_blank" >RIV/60460709:41210/24:100048 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.17221/119/2023-SWR" target="_blank" >https://doi.org/10.17221/119/2023-SWR</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.17221/119/2023-SWR" target="_blank" >10.17221/119/2023-SWR</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Digital soil mapping using machine learning-based methods to predict soil organic carbon in two different districts in the Czech Republic

  • Popis výsledku v původním jazyce

    Soil organic carbon (SOC) is an important soil characteristic as well as a way how to mitigate climate change. Information on its content and spatial distribution is thus crucial. Digital soil mapping (DSM) is a suitable way to evaluate spatial distribution of soil properties thanks to its ability to obtain accurate information about soil. This research aims to apply machine learning algorithms using various environmental covariates to generate digital SOC maps for mineral top-soils in the Liberec and Domažlice districts, located in the Czech Republic. The soil class, land cover, and geology maps as well as terrain covariates extracted from the digital elevation model and remote sensing data were used as covariates in modelling. The spatial distribution of SOC was predicted based on its relationships with covariates using random forest (RF), cubist, and quantile random forest (QRF) models. Results of the RF model showed that land cover (vegetation) and elevation were the most important environmental variables in the SOC prediction in both districts. The RF had better efficiency and accuracy than the cubist and QRF to predict SOC in both districts. The greatest R2 value (0.63) was observed in the Domažlice district using the RF model. However, cubist and QRF showed appropriate performance in both districts, too.

  • Název v anglickém jazyce

    Digital soil mapping using machine learning-based methods to predict soil organic carbon in two different districts in the Czech Republic

  • Popis výsledku anglicky

    Soil organic carbon (SOC) is an important soil characteristic as well as a way how to mitigate climate change. Information on its content and spatial distribution is thus crucial. Digital soil mapping (DSM) is a suitable way to evaluate spatial distribution of soil properties thanks to its ability to obtain accurate information about soil. This research aims to apply machine learning algorithms using various environmental covariates to generate digital SOC maps for mineral top-soils in the Liberec and Domažlice districts, located in the Czech Republic. The soil class, land cover, and geology maps as well as terrain covariates extracted from the digital elevation model and remote sensing data were used as covariates in modelling. The spatial distribution of SOC was predicted based on its relationships with covariates using random forest (RF), cubist, and quantile random forest (QRF) models. Results of the RF model showed that land cover (vegetation) and elevation were the most important environmental variables in the SOC prediction in both districts. The RF had better efficiency and accuracy than the cubist and QRF to predict SOC in both districts. The greatest R2 value (0.63) was observed in the Domažlice district using the RF model. However, cubist and QRF showed appropriate performance in both districts, too.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40104 - Soil science

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Soil and Water Research

  • ISSN

    1801-5395

  • e-ISSN

    1801-5395

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    18

  • Strana od-do

    32-49

  • Kód UT WoS článku

    001148213900001

  • EID výsledku v databázi Scopus

    2-s2.0-85185780012