Practical application of genomic selection in a doubled-haploid winter wheat breeding program
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F17%3A73938" target="_blank" >RIV/60460709:41320/17:73938 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11032-017-0715-8" target="_blank" >http://dx.doi.org/10.1007/s11032-017-0715-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11032-017-0715-8" target="_blank" >10.1007/s11032-017-0715-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Practical application of genomic selection in a doubled-haploid winter wheat breeding program
Popis výsledku v původním jazyce
Crop improvement is a long-term, expensive institutional endeavor. Genomic selection (GS), which uses single nucleotide polymorphism (SNP) information to estimate genomic breeding values, has proven efficient to increasing genetic gain by accelerating the breeding process in animal breeding programs. As for crop improvement, with few exceptions, GS applicability remains in the evaluation of algorithm performance. In this study, we examined factors related to GS applicability in line development stage for grain yield using a hard red winter wheat (Triticum aestivum L.) doubled-haploid population. The performance of GS was evaluated in two consecutive years to predict grain yield. In general, the semi-parametric reproducing kernel Hilbert space prediction algorithm outperformed parametric genomic best linear unbiased prediction. For both parametric and semi-parametric algorithms, an upward bias in predictability was apparent in within-year cross-validation, suggesting the prerequisite of cross-year val
Název v anglickém jazyce
Practical application of genomic selection in a doubled-haploid winter wheat breeding program
Popis výsledku anglicky
Crop improvement is a long-term, expensive institutional endeavor. Genomic selection (GS), which uses single nucleotide polymorphism (SNP) information to estimate genomic breeding values, has proven efficient to increasing genetic gain by accelerating the breeding process in animal breeding programs. As for crop improvement, with few exceptions, GS applicability remains in the evaluation of algorithm performance. In this study, we examined factors related to GS applicability in line development stage for grain yield using a hard red winter wheat (Triticum aestivum L.) doubled-haploid population. The performance of GS was evaluated in two consecutive years to predict grain yield. In general, the semi-parametric reproducing kernel Hilbert space prediction algorithm outperformed parametric genomic best linear unbiased prediction. For both parametric and semi-parametric algorithms, an upward bias in predictability was apparent in within-year cross-validation, suggesting the prerequisite of cross-year val
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MOLECULAR BREEDING
ISSN
1380-3743
e-ISSN
—
Svazek periodika
37
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000411138800002
EID výsledku v databázi Scopus
2-s2.0-85028637119