Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F17%3A74923" target="_blank" >RIV/60460709:41320/17:74923 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1186/s12864-017-4258-5" target="_blank" >http://dx.doi.org/10.1186/s12864-017-4258-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s12864-017-4258-5" target="_blank" >10.1186/s12864-017-4258-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform
Popis výsledku v původním jazyce
Genomic selection (GS) can offer unprecedented gains, in terms of cost efficiency and generation turnover, to forest tree selective breeding, especially for late expressing and low heritability traits. Here, we used 1) exome capture as a genotyping platform for 1372 Douglas-fir trees representing 37 full sib families growing on three sites in British Columbia, Canada and 2) height growth and wood density (EBVs), and deregressed estimated breeding values (DEBVs) as phenotypes. Representing models with (EBVs) and without (DEBVs) pedigree structure. Ridge regression best linear unbiased predictor (RRBLUP) and generalized ridge regression (GRR) were used to assess their predictive accuracies over space (within site, cross sites, multi site, and multi site to single site) and time (age to age and trait to trait). The RRBLUP and GRR models produced similar predictive accuracies across the studied traits. Within site GS prediction accuracies with models trained on EBVs were high (RRBLUP from 0,79 to 0,91 an
Název v anglickém jazyce
Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform
Popis výsledku anglicky
Genomic selection (GS) can offer unprecedented gains, in terms of cost efficiency and generation turnover, to forest tree selective breeding, especially for late expressing and low heritability traits. Here, we used 1) exome capture as a genotyping platform for 1372 Douglas-fir trees representing 37 full sib families growing on three sites in British Columbia, Canada and 2) height growth and wood density (EBVs), and deregressed estimated breeding values (DEBVs) as phenotypes. Representing models with (EBVs) and without (DEBVs) pedigree structure. Ridge regression best linear unbiased predictor (RRBLUP) and generalized ridge regression (GRR) were used to assess their predictive accuracies over space (within site, cross sites, multi site, and multi site to single site) and time (age to age and trait to trait). The RRBLUP and GRR models produced similar predictive accuracies across the studied traits. Within site GS prediction accuracies with models trained on EBVs were high (RRBLUP from 0,79 to 0,91 an
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40102 - Forestry
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BMC GENOMICS
ISSN
1471-2164
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
930
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
000416966500001
EID výsledku v databázi Scopus
2-s2.0-85036477155