Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F15%3A67069" target="_blank" >RIV/60460709:41320/15:67069 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1186/s12864-015-1597-y" target="_blank" >http://dx.doi.org/10.1186/s12864-015-1597-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s12864-015-1597-y" target="_blank" >10.1186/s12864-015-1597-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing
Popis výsledku v původním jazyce
Genomic selection (GS) in forestry can substantially reduce the length of breeding cycle and increase gain per unit time through early selection and greater selection intensity, particularly for traits with low heritability and late expression. Affordable next-generation sequencing technologies made it possible to genotype large numbers of trees at a reasonable cost. Genotyping-by-sequencing was used to genotype 1,126 Interior spruce trees representing 25 open-pollinated families planted over three sites. Trees were phenotyped for several yield and wood attributes. Single- and multi-site GS prediction models were developed using the Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) and the Generalized Ridge Regression (GRR) to test different assumption about traits architecture. The RR-BLUP GS prediction model produced better accuracies than the GRR supporting traits? complex architecture. GS prediction accuracies for multi-site were high and better than those of single-sites w
Název v anglickém jazyce
Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing
Popis výsledku anglicky
Genomic selection (GS) in forestry can substantially reduce the length of breeding cycle and increase gain per unit time through early selection and greater selection intensity, particularly for traits with low heritability and late expression. Affordable next-generation sequencing technologies made it possible to genotype large numbers of trees at a reasonable cost. Genotyping-by-sequencing was used to genotype 1,126 Interior spruce trees representing 25 open-pollinated families planted over three sites. Trees were phenotyped for several yield and wood attributes. Single- and multi-site GS prediction models were developed using the Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) and the Generalized Ridge Regression (GRR) to test different assumption about traits architecture. The RR-BLUP GS prediction model produced better accuracies than the GRR supporting traits? complex architecture. GS prediction accuracies for multi-site were high and better than those of single-sites w
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
GK - Lesnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BMC GENOMICS
ISSN
1471-2164
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
370
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
000354175900004
EID výsledku v databázi Scopus
—