Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F18%3A78946" target="_blank" >RIV/60460709:41320/18:78946 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.agrformet.2018.06.009" target="_blank" >http://dx.doi.org/10.1016/j.agrformet.2018.06.009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.agrformet.2018.06.009" target="_blank" >10.1016/j.agrformet.2018.06.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices
Popis výsledku v původním jazyce
In the present study, multiple linear regression models were constructed to simulate the yield of winter wheat, rapeseed, maize and sunflower in Hungary for the 2000-2016 time period. We used meteorological data and soil water content from meteorological reanalysis as predictors of the models in monthly resolution. We included annual fertilizer amount in the analysis to remove trend from the census data. We also used remote sensing based vegetation index to extend the approach for early crop yield forecast purposes and to study the added value of proxy data on the predictive power of the statistical models. Using a stepwise linear regression-like method the most appropriate models were selected based on the statistical evaluation of the model fitting. We provided simple equations with well interpretable coefficients that can estimate crop yield with high accuracy. Cross-validated explained variance were 67% for winter wheat, 76% for rapeseed, 81% for maize and 68,5% for sunflower. The modelling exerc
Název v anglickém jazyce
Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices
Popis výsledku anglicky
In the present study, multiple linear regression models were constructed to simulate the yield of winter wheat, rapeseed, maize and sunflower in Hungary for the 2000-2016 time period. We used meteorological data and soil water content from meteorological reanalysis as predictors of the models in monthly resolution. We included annual fertilizer amount in the analysis to remove trend from the census data. We also used remote sensing based vegetation index to extend the approach for early crop yield forecast purposes and to study the added value of proxy data on the predictive power of the statistical models. Using a stepwise linear regression-like method the most appropriate models were selected based on the statistical evaluation of the model fitting. We provided simple equations with well interpretable coefficients that can estimate crop yield with high accuracy. Cross-validated explained variance were 67% for winter wheat, 76% for rapeseed, 81% for maize and 68,5% for sunflower. The modelling exerc
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40102 - Forestry
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000803" target="_blank" >EF16_019/0000803: Excelentní Výzkum jako podpora Adaptace lesnictví a dřevařství na globální změnu a 4. průmyslovou revoluci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AGRICULTURAL AND FOREST METEOROLOGY
ISSN
0168-1923
e-ISSN
—
Svazek periodika
260
Číslo periodika v rámci svazku
OCT2018
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
21
Strana od-do
300-320
Kód UT WoS článku
000445306700028
EID výsledku v databázi Scopus
2-s2.0-85049311759