Testing the Robust Yield Estimation Method for Winter Wheat, Corn, Rapeseed, and Sunflower with Different Vegetation Indices and Meteorological Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F22%3A94224" target="_blank" >RIV/60460709:41320/22:94224 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2072-4292/14/12/2860?type=check_update&version=1" target="_blank" >https://www.mdpi.com/2072-4292/14/12/2860?type=check_update&version=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs14122860" target="_blank" >10.3390/rs14122860</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Testing the Robust Yield Estimation Method for Winter Wheat, Corn, Rapeseed, and Sunflower with Different Vegetation Indices and Meteorological Data
Popis výsledku v původním jazyce
Remote sensing-based crop yield estimation methods rely on vegetation indices, which depend on the availability of the number of observations during the year, influencing the value of the derived crop yield. In the present study, a robust yield estimation method was improved for estimating the yield of corn, winter wheat, sunflower, and rapeseed in Hungary for the period 2000-2020 using 16 vegetation indices. Then, meteorological data were used to reduce the differences between the estimated and census yield data. In the case of corn, the best result was obtained using the Green Atmospherically Resistant Vegetation Index, where the correlation between estimated and census data was R-2 = 0,888 before and R-2 = 0,968 after the meteorological correction. In the case of winter wheat, the Difference Vegetation Index produced the best result with R-2 = 0,815 and 0,894 before and after the meteorological correction. For sunflower, these correlation values were 0,730 and 0,880, and for rapeseed, 0,765 and 0,
Název v anglickém jazyce
Testing the Robust Yield Estimation Method for Winter Wheat, Corn, Rapeseed, and Sunflower with Different Vegetation Indices and Meteorological Data
Popis výsledku anglicky
Remote sensing-based crop yield estimation methods rely on vegetation indices, which depend on the availability of the number of observations during the year, influencing the value of the derived crop yield. In the present study, a robust yield estimation method was improved for estimating the yield of corn, winter wheat, sunflower, and rapeseed in Hungary for the period 2000-2020 using 16 vegetation indices. Then, meteorological data were used to reduce the differences between the estimated and census yield data. In the case of corn, the best result was obtained using the Green Atmospherically Resistant Vegetation Index, where the correlation between estimated and census data was R-2 = 0,888 before and R-2 = 0,968 after the meteorological correction. In the case of winter wheat, the Difference Vegetation Index produced the best result with R-2 = 0,815 and 0,894 before and after the meteorological correction. For sunflower, these correlation values were 0,730 and 0,880, and for rapeseed, 0,765 and 0,
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000803" target="_blank" >EF16_019/0000803: Excelentní Výzkum jako podpora Adaptace lesnictví a dřevařství na globální změnu a 4. průmyslovou revoluci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
1-23
Kód UT WoS článku
000817668100001
EID výsledku v databázi Scopus
2-s2.0-85132700130