Habitat metrics based on multi-temporal Landsat imagery for mapping large mammal habitat
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F20%3A80893" target="_blank" >RIV/60460709:41320/20:80893 - isvavai.cz</a>
Výsledek na webu
<a href="https://zslpublications.onlinelibrary.wiley.com/doi/10.1002/rse2.122" target="_blank" >https://zslpublications.onlinelibrary.wiley.com/doi/10.1002/rse2.122</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/rse2.122" target="_blank" >10.1002/rse2.122</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Habitat metrics based on multi-temporal Landsat imagery for mapping large mammal habitat
Popis výsledku v původním jazyce
Up-to-date and fine-scale habitat information is essential for managing and conserving wildlife. Studies assessing wildlife habitat commonly rely on categorical land-cover maps as predictors in habitat models. However, broad land-cover categories often do not adequately capture key habitat features and generating robust land-cover maps is challenging and laborious. Continuous variables derived directly from satellite imagery provide an alternative for capturing land-cover characteristics in habitat models. Improved data availability and processing capacities now allow integrating all available images from medium-resolution sensors in compositing approaches that derive spectral-temporal metrics at the pixel level, summarizing spectral responses over time. In this study, we assessed the usefulness of such metrics derived from Landsat imagery for mapping wildlife habitat. We categorize spectral-temporal metrics into habitat metrics characterizing different aspects of wildlife habitat. Comparing the perf
Název v anglickém jazyce
Habitat metrics based on multi-temporal Landsat imagery for mapping large mammal habitat
Popis výsledku anglicky
Up-to-date and fine-scale habitat information is essential for managing and conserving wildlife. Studies assessing wildlife habitat commonly rely on categorical land-cover maps as predictors in habitat models. However, broad land-cover categories often do not adequately capture key habitat features and generating robust land-cover maps is challenging and laborious. Continuous variables derived directly from satellite imagery provide an alternative for capturing land-cover characteristics in habitat models. Improved data availability and processing capacities now allow integrating all available images from medium-resolution sensors in compositing approaches that derive spectral-temporal metrics at the pixel level, summarizing spectral responses over time. In this study, we assessed the usefulness of such metrics derived from Landsat imagery for mapping wildlife habitat. We categorize spectral-temporal metrics into habitat metrics characterizing different aspects of wildlife habitat. Comparing the perf
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing in Ecology and Conservation
ISSN
2056-3485
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
52-69
Kód UT WoS článku
000478292900001
EID výsledku v databázi Scopus
2-s2.0-85082020161