Comparing generalized and customized spread models for nonnative forest pests
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F20%3A84325" target="_blank" >RIV/60460709:41320/20:84325 - isvavai.cz</a>
Výsledek na webu
<a href="https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/eap.1988" target="_blank" >https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/eap.1988</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/eap.1988" target="_blank" >10.1002/eap.1988</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing generalized and customized spread models for nonnative forest pests
Popis výsledku v původním jazyce
While generality is often desirable in ecology, customized models for individual species are thought to be more predictive by accounting for context specificity. However, fully customized models require more information for focal species. We focus on pest spread and ask: How much does predictive power differ between generalized and customized models? Further, we examine whether an intermediate semi-generalized model, combining elements of a general model with species-specific modifications, could yield predictive advantages. We compared predictive power of a generalized model applied to all forest pest species (the generalized dispersal kernel or GDK) to customized spread models for three invasive forest pests (beech bark disease Cryptococcus fagisuga, gypsy moth Lymantria dispar, and hemlock woolly adelgid Adelges tsugae), for which time-series data exist. We generated semi-generalized dispersal kernel models (SDK) through GDK correction factors based on additional species-specific information. We f
Název v anglickém jazyce
Comparing generalized and customized spread models for nonnative forest pests
Popis výsledku anglicky
While generality is often desirable in ecology, customized models for individual species are thought to be more predictive by accounting for context specificity. However, fully customized models require more information for focal species. We focus on pest spread and ask: How much does predictive power differ between generalized and customized models? Further, we examine whether an intermediate semi-generalized model, combining elements of a general model with species-specific modifications, could yield predictive advantages. We compared predictive power of a generalized model applied to all forest pest species (the generalized dispersal kernel or GDK) to customized spread models for three invasive forest pests (beech bark disease Cryptococcus fagisuga, gypsy moth Lymantria dispar, and hemlock woolly adelgid Adelges tsugae), for which time-series data exist. We generated semi-generalized dispersal kernel models (SDK) through GDK correction factors based on additional species-specific information. We f
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10618 - Ecology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ECOLOGICAL APPLICATIONS
ISSN
1051-0761
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000505549500024
EID výsledku v databázi Scopus
2-s2.0-85075423540