3D point cloud fusion from UAV and TLS to assess temperate managed forest structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F22%3A92880" target="_blank" >RIV/60460709:41320/22:92880 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1569843222001182" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1569843222001182</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jag.2022.102917" target="_blank" >10.1016/j.jag.2022.102917</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
3D point cloud fusion from UAV and TLS to assess temperate managed forest structures
Popis výsledku v původním jazyce
Light detection and ranging (LiDAR) technology has become one of the most dominant acquisition methods for modeling forest attributes, such as very accurate tree structure information, which is necessary for qualitative forest management and research activities. In this study, we evaluated the efficacy of standalone unmanned aerial vehicle-laser scanning (UAV-LS) and terrestrial laser scanning (TLS) data to accurately estimate forest tree metrics under differing management types. Furthermore, we combined the UAV-LS and TLS data to test whether fusion can improve the mapping of the three-dimensional (3D) structure of individual trees to favor accurate estimates of tree metrics. We initially calculated the percentage of point density per square meter aboveground in each height class at intervals of 1 m for the UAV-LS, TLS, and fusion datasets. This helped illustrate the vertical point density distribution that reflects the structural complexity between broadleaf and conifer trees. We then used tree-lev
Název v anglickém jazyce
3D point cloud fusion from UAV and TLS to assess temperate managed forest structures
Popis výsledku anglicky
Light detection and ranging (LiDAR) technology has become one of the most dominant acquisition methods for modeling forest attributes, such as very accurate tree structure information, which is necessary for qualitative forest management and research activities. In this study, we evaluated the efficacy of standalone unmanned aerial vehicle-laser scanning (UAV-LS) and terrestrial laser scanning (TLS) data to accurately estimate forest tree metrics under differing management types. Furthermore, we combined the UAV-LS and TLS data to test whether fusion can improve the mapping of the three-dimensional (3D) structure of individual trees to favor accurate estimates of tree metrics. We initially calculated the percentage of point density per square meter aboveground in each height class at intervals of 1 m for the UAV-LS, TLS, and fusion datasets. This helped illustrate the vertical point density distribution that reflects the structural complexity between broadleaf and conifer trees. We then used tree-lev
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000803" target="_blank" >EF16_019/0000803: Excelentní Výzkum jako podpora Adaptace lesnictví a dřevařství na globální změnu a 4. průmyslovou revoluci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Applied Earth Observation and Geoinformation
ISSN
1569-8432
e-ISSN
—
Svazek periodika
112
Číslo periodika v rámci svazku
2022
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000844283000002
EID výsledku v databázi Scopus
2-s2.0-85134565162