Widespread experimental evidence of Allee effects in insects: a meta-analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F24%3AN0000017" target="_blank" >RIV/60460709:41320/24:N0000017 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fs.usda.gov/nrs/pubs/jrnl/2024/nrs_2024_branco_001.pdf" target="_blank" >https://www.fs.usda.gov/nrs/pubs/jrnl/2024/nrs_2024_branco_001.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1127/entomologia/2024/2377" target="_blank" >10.1127/entomologia/2024/2377</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Widespread experimental evidence of Allee effects in insects: a meta-analysis
Popis výsledku v původním jazyce
During the last two decades there has been growing recognition of the importance of Allee effects in population dynamics and applied ecology. The Allee effect, that is decreased fitness at lower population densities, has been recognized as potentially playing an important role in the conservation of endangered species, in the practice of biological control, and the eradication of invasive species. Although a number of theoretical studies have been devoted to the role of Allee effects in the population dynamics of insects and other terrestrial arthropods, experimental evidence documenting Allee effects is still scarce. Here, we reviewed the literature reporting on density-dependent relationships in low-density populations and conducted a meta-analysis of 191 case studies to identify the occurrence of Allee effects and associated species traits. Allee effects are not rare in terrestrial arthropods, as they were reported in 47% of the cases we reviewed, comprising 46 out of 68 species. Ample examples exist for both demographic Allee effects (28 out of 74 cases cases), and component Allee effects (61 out of 117 cases). Insufficient mating success, cooperative feeding, and enemy escape were the three main mechanisms associated with Allee effects in terrestrial arthropods. Insufficient reproductive success was the mechanism with the highest proportion of related Allee effects (71%). Voltinism and host specialization were common species traits behind demographic Allee effects. Host specialists with univoltine life cycles tended to have stronger Allee effects. The high frequency of Allee effects in terrestrial arthropods reported here and the identified mechanisms behind them have important implications for the selection of management strategies.
Název v anglickém jazyce
Widespread experimental evidence of Allee effects in insects: a meta-analysis
Popis výsledku anglicky
During the last two decades there has been growing recognition of the importance of Allee effects in population dynamics and applied ecology. The Allee effect, that is decreased fitness at lower population densities, has been recognized as potentially playing an important role in the conservation of endangered species, in the practice of biological control, and the eradication of invasive species. Although a number of theoretical studies have been devoted to the role of Allee effects in the population dynamics of insects and other terrestrial arthropods, experimental evidence documenting Allee effects is still scarce. Here, we reviewed the literature reporting on density-dependent relationships in low-density populations and conducted a meta-analysis of 191 case studies to identify the occurrence of Allee effects and associated species traits. Allee effects are not rare in terrestrial arthropods, as they were reported in 47% of the cases we reviewed, comprising 46 out of 68 species. Ample examples exist for both demographic Allee effects (28 out of 74 cases cases), and component Allee effects (61 out of 117 cases). Insufficient mating success, cooperative feeding, and enemy escape were the three main mechanisms associated with Allee effects in terrestrial arthropods. Insufficient reproductive success was the mechanism with the highest proportion of related Allee effects (71%). Voltinism and host specialization were common species traits behind demographic Allee effects. Host specialists with univoltine life cycles tended to have stronger Allee effects. The high frequency of Allee effects in terrestrial arthropods reported here and the identified mechanisms behind them have important implications for the selection of management strategies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10600 - Biological sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Entomologica Generalis
ISSN
0171-8177
e-ISSN
—
Svazek periodika
44
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
14
Strana od-do
765-778
Kód UT WoS článku
001286673800001
EID výsledku v databázi Scopus
2-s2.0-85210098795