ADDRESSING MULTIPLE FACETS OF BIAS AND UNCERTAINTY IN CONTINENTAL-SCALE BIODIVERSITY DATABASES
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F24%3AN0000029" target="_blank" >RIV/60460709:41320/24:N0000029 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41330/24:100035
Výsledek na webu
<a href="https://journals.ku.edu/jbi/article/view/21810" target="_blank" >https://journals.ku.edu/jbi/article/view/21810</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5281/zenodo.12179384" target="_blank" >10.5281/zenodo.12179384</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ADDRESSING MULTIPLE FACETS OF BIAS AND UNCERTAINTY IN CONTINENTAL-SCALE BIODIVERSITY DATABASES
Popis výsledku v původním jazyce
The availability of biodiversity databases is expanding at unprecedented rates. Nevertheless, species occurrence data can be intrinsically biased and contain uncertainties that impact the accuracy and reliability of biodiversity estimates. In this study, we developed a reproducible framework to assess three dimensions of bias-taxonomic, spatial, and temporal-as well as temporal uncertainty associated with data collections. We utilized the vegetation plot data located in Europe, from sPlotOpen, an open-access database, as a case study. The metrics proposed for estimating bias include completeness of the species richness for taxonomic bias, Nearest Neighbor Index for spatial bias, and Pielou's index for temporal bias. Additionally, we introduced a new method based on a negative exponential curve to model the temporal decay in biodiversity data, aiming to quantify temporal uncertainty. Finally, we assessed the sampling bias considering the influence of various spatial variables (i.e, road density, human population count, Natura 2000 network and topographic roughness). We discovered that the facets of bias and the temporal uncertainty varied throughout Europe, as did the different roles played by spatial variables in determining biases. sPlotOpen showed a clustered distribution of the vegetation plots, and an uneven distribution in sampling completeness, year of sampling and temporal uncertainty. The facets of bias were significantly explained mainly by the presence of Natura 2000 network and marginally by the human population count. These results suggest that employing an efficient procedure to examine biases and uncertainties in data collections can enhance data quality and provide more reliable biodiversity estimates.
Název v anglickém jazyce
ADDRESSING MULTIPLE FACETS OF BIAS AND UNCERTAINTY IN CONTINENTAL-SCALE BIODIVERSITY DATABASES
Popis výsledku anglicky
The availability of biodiversity databases is expanding at unprecedented rates. Nevertheless, species occurrence data can be intrinsically biased and contain uncertainties that impact the accuracy and reliability of biodiversity estimates. In this study, we developed a reproducible framework to assess three dimensions of bias-taxonomic, spatial, and temporal-as well as temporal uncertainty associated with data collections. We utilized the vegetation plot data located in Europe, from sPlotOpen, an open-access database, as a case study. The metrics proposed for estimating bias include completeness of the species richness for taxonomic bias, Nearest Neighbor Index for spatial bias, and Pielou's index for temporal bias. Additionally, we introduced a new method based on a negative exponential curve to model the temporal decay in biodiversity data, aiming to quantify temporal uncertainty. Finally, we assessed the sampling bias considering the influence of various spatial variables (i.e, road density, human population count, Natura 2000 network and topographic roughness). We discovered that the facets of bias and the temporal uncertainty varied throughout Europe, as did the different roles played by spatial variables in determining biases. sPlotOpen showed a clustered distribution of the vegetation plots, and an uneven distribution in sampling completeness, year of sampling and temporal uncertainty. The facets of bias were significantly explained mainly by the presence of Natura 2000 network and marginally by the human population count. These results suggest that employing an efficient procedure to examine biases and uncertainties in data collections can enhance data quality and provide more reliable biodiversity estimates.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biodiversity Informatics
ISSN
1546-9735
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
56-77
Kód UT WoS článku
001328396900001
EID výsledku v databázi Scopus
—