Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bias in vegetation databases? A comparison of stratified-random and preferential sampling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F11%3A00049712" target="_blank" >RIV/00216224:14310/11:00049712 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43210/11:00177667

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bias in vegetation databases? A comparison of stratified-random and preferential sampling

  • Popis výsledku v původním jazyce

    Aim: Vegetation plots collected since the early 20th century and stored in large vegetation databases are an important source of ecological information. These databases are used for analyses of vegetation diversity and estimation of vegetation parameters, however such analyses can be biased due to preferential sampling of the original data. In contrast, modern vegetation survey increasingly uses stratified-random instead of preferential sampling. To explore how these two sampling schemes affect vegetation analyses, we compare parameters of vegetation diversity based on preferentially sampled plots from a large vegetation database with those based on stratified-random sampling. Location: Moravian Karst and Silesia, Czech Republic. Methods: We compared two parallel analyses of forest vegetation, one based on preferentially sampled plots taken from a national vegetation database and the other on plots sampled in the field according to a stratified-random design.

  • Název v anglickém jazyce

    Bias in vegetation databases? A comparison of stratified-random and preferential sampling

  • Popis výsledku anglicky

    Aim: Vegetation plots collected since the early 20th century and stored in large vegetation databases are an important source of ecological information. These databases are used for analyses of vegetation diversity and estimation of vegetation parameters, however such analyses can be biased due to preferential sampling of the original data. In contrast, modern vegetation survey increasingly uses stratified-random instead of preferential sampling. To explore how these two sampling schemes affect vegetation analyses, we compare parameters of vegetation diversity based on preferentially sampled plots from a large vegetation database with those based on stratified-random sampling. Location: Moravian Karst and Silesia, Czech Republic. Methods: We compared two parallel analyses of forest vegetation, one based on preferentially sampled plots taken from a national vegetation database and the other on plots sampled in the field according to a stratified-random design.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    EH - Ekologie – společenstva

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Vegetation Science

  • ISSN

    1100-9233

  • e-ISSN

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    281-291

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus