Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F15%3A67739" target="_blank" >RIV/60460709:41330/15:67739 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5194/hess-19-1827-2015" target="_blank" >http://dx.doi.org/10.5194/hess-19-1827-2015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/hess-19-1827-2015" target="_blank" >10.5194/hess-19-1827-2015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe
Popis výsledku v původním jazyce
Information on extreme precipitation for future climate is needed to assess the changes in the frequency and intensity of flooding. The primary source of information in climate change impact studies is climate model projections. However, due to the coarse resolution and biases of these models, they cannot be directly used in hydrological models. Hence, statistical downscaling is necessary to address climate change impacts at the catchment scale. This study compares eight statistical downscaling methods(SDMs) often used in climate change impact studies. Four methods are based on change factors (CFs), three are bias correction (BC) methods, and one is a perfect prognosis method. The eight methods are used to downscale precipitation output from 15 regional climate models (RCMs) from the ENSEMBLES project for 11 catchments in Europe. The overall results point to an increase in extreme precipitation in most catchments in both winter and summer. For individual catchmen
Název v anglickém jazyce
Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe
Popis výsledku anglicky
Information on extreme precipitation for future climate is needed to assess the changes in the frequency and intensity of flooding. The primary source of information in climate change impact studies is climate model projections. However, due to the coarse resolution and biases of these models, they cannot be directly used in hydrological models. Hence, statistical downscaling is necessary to address climate change impacts at the catchment scale. This study compares eight statistical downscaling methods(SDMs) often used in climate change impact studies. Four methods are based on change factors (CFs), three are bias correction (BC) methods, and one is a perfect prognosis method. The eight methods are used to downscale precipitation output from 15 regional climate models (RCMs) from the ENSEMBLES project for 11 catchments in Europe. The overall results point to an increase in extreme precipitation in most catchments in both winter and summer. For individual catchmen
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DA - Hydrologie a limnologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Hydrology and Earth System Sciences
ISSN
1027-5606
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
1827-1847
Kód UT WoS článku
000353877000014
EID výsledku v databázi Scopus
—