An R package for assessment of statistical downscaling methods for hydrological climate change impact studies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F17%3A73643" target="_blank" >RIV/60460709:41330/17:73643 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.envsoft.2017.03.036" target="_blank" >http://dx.doi.org/10.1016/j.envsoft.2017.03.036</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.envsoft.2017.03.036" target="_blank" >10.1016/j.envsoft.2017.03.036</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An R package for assessment of statistical downscaling methods for hydrological climate change impact studies
Popis výsledku v původním jazyce
Due to inherent bias the climate model simulated precipitation and temperature cannot be used to drive a hydrological model without pre-processing - statistical downscaling. This often consists of reducing the bias in the climate model simulations (bias correction) and/or transformation of the observed data in order to match the projected changes (delta change). The validation of the statistical downscaling methods is typically limited to the scale for which the transformation was calibrated and the driving variables (precipitation and temperature) of the hydrological model. The paper introduces an R package musica which provides ready to use tools for routine validation of statistical downscaling methods at multiple time scales as well as several advanced methods for statistical downscaling. The musica package is used to validate simulated runoff. It is shown that using conventional methods for downscaling of precipitation and temperature often leads to substantial biases in simulated runoff at all
Název v anglickém jazyce
An R package for assessment of statistical downscaling methods for hydrological climate change impact studies
Popis výsledku anglicky
Due to inherent bias the climate model simulated precipitation and temperature cannot be used to drive a hydrological model without pre-processing - statistical downscaling. This often consists of reducing the bias in the climate model simulations (bias correction) and/or transformation of the observed data in order to match the projected changes (delta change). The validation of the statistical downscaling methods is typically limited to the scale for which the transformation was calibrated and the driving variables (precipitation and temperature) of the hydrological model. The paper introduces an R package musica which provides ready to use tools for routine validation of statistical downscaling methods at multiple time scales as well as several advanced methods for statistical downscaling. The musica package is used to validate simulated runoff. It is shown that using conventional methods for downscaling of precipitation and temperature often leads to substantial biases in simulated runoff at all
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10503 - Water resources
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-16549S" target="_blank" >GA16-16549S: Půdní a hydrologické sucho v měnícím se klimatu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Environmental Modelling & Software
ISSN
1364-8152
e-ISSN
—
Svazek periodika
2017
Číslo periodika v rámci svazku
95
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
22-28
Kód UT WoS článku
000406177500003
EID výsledku v databázi Scopus
2-s2.0-85013014176