Genetic Programming Based Approach Towards Understanding the Dynamics of Urban Rainfall-runoff Process
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F16%3A71164" target="_blank" >RIV/60460709:41330/16:71164 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.proeng.2016.07.601" target="_blank" >http://dx.doi.org/10.1016/j.proeng.2016.07.601</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.proeng.2016.07.601" target="_blank" >10.1016/j.proeng.2016.07.601</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Genetic Programming Based Approach Towards Understanding the Dynamics of Urban Rainfall-runoff Process
Popis výsledku v původním jazyce
Genetic Programming (GP) is an evolutionary-algorithm based methodology that is the best suited to model non-linear dynamic systems. The potential of GP has not been exploited to the fullest extent in the field of hydrology to understand the complex dynamics involved. The state of the art applications of GP in hydrological modelling involve the use of GP as a short-term prediction and forecast tool rather than as a framework for the development of a better model that can handle current challenges. In today is scenario, with increasing monitoring programmes and computational power, the techniques like GP can be employed for the development and evaluation of hydrological models, balancing, prior information, model complexity, and parameter and output uncertainty. In this study, GP based data driven model in a single and multi-objective framework is trained to capture the dynamics of the urban rainfall-runoff process using a series of tanks, where each tank is a storage unit in a watershed that correspo
Název v anglickém jazyce
Genetic Programming Based Approach Towards Understanding the Dynamics of Urban Rainfall-runoff Process
Popis výsledku anglicky
Genetic Programming (GP) is an evolutionary-algorithm based methodology that is the best suited to model non-linear dynamic systems. The potential of GP has not been exploited to the fullest extent in the field of hydrology to understand the complex dynamics involved. The state of the art applications of GP in hydrological modelling involve the use of GP as a short-term prediction and forecast tool rather than as a framework for the development of a better model that can handle current challenges. In today is scenario, with increasing monitoring programmes and computational power, the techniques like GP can be employed for the development and evaluation of hydrological models, balancing, prior information, model complexity, and parameter and output uncertainty. In this study, GP based data driven model in a single and multi-objective framework is trained to capture the dynamics of the urban rainfall-runoff process using a series of tanks, where each tank is a storage unit in a watershed that correspo
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DA - Hydrologie a limnologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Procedia Engineering
ISSN
1877-7058
e-ISSN
—
Svazek periodika
2016
Číslo periodika v rámci svazku
154
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
1093-1102
Kód UT WoS článku
000385793200147
EID výsledku v databázi Scopus
—