Incorporating basic hydrological concepts into genetic programming for rainfall-runoff forecasting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F14%3A59700" target="_blank" >RIV/60460709:41330/14:59700 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41330/13:66712
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Incorporating basic hydrological concepts into genetic programming for rainfall-runoff forecasting
Popis výsledku v původním jazyce
This paper focuses on improving rainfall-runoff forecasts by a combination of genetic programming (GP) and basic hydrological modelling concepts. GP is a general optimisation technique for making an automated search of a computer program that solves someparticular problem. The SORD! program was developed for the purposes of this study (in the R programming language). It is an implementation of canonical GP. Special functions are used for a combined approach of hydrological concepts and GP. The specialfunctions are a reservoir model, a simple moving average model, and a cumulative sum and delay operator. The efficiency of the approach presented here is tested on runoff predictions for five catchments of various sizes. The input data consists of dailyrainfall and runoff series. The forecast step is one day. The performance of the proposed approach is compared with the results of the artificial neural network model (ANN) and with the GP model without special functions. GP combined with
Název v anglickém jazyce
Incorporating basic hydrological concepts into genetic programming for rainfall-runoff forecasting
Popis výsledku anglicky
This paper focuses on improving rainfall-runoff forecasts by a combination of genetic programming (GP) and basic hydrological modelling concepts. GP is a general optimisation technique for making an automated search of a computer program that solves someparticular problem. The SORD! program was developed for the purposes of this study (in the R programming language). It is an implementation of canonical GP. Special functions are used for a combined approach of hydrological concepts and GP. The specialfunctions are a reservoir model, a simple moving average model, and a cumulative sum and delay operator. The efficiency of the approach presented here is tested on runoff predictions for five catchments of various sizes. The input data consists of dailyrainfall and runoff series. The forecast step is one day. The performance of the proposed approach is compared with the results of the artificial neural network model (ANN) and with the GP model without special functions. GP combined with
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DA - Hydrologie a limnologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTING
ISSN
0010-485X
e-ISSN
—
Svazek periodika
95
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
18
Strana od-do
363-380
Kód UT WoS článku
000338630100021
EID výsledku v databázi Scopus
—