Regionalization of runoff models derived by genetic programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F17%3A73285" target="_blank" >RIV/60460709:41330/17:73285 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jhydrol.2017.02.018" target="_blank" >http://dx.doi.org/10.1016/j.jhydrol.2017.02.018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jhydrol.2017.02.018" target="_blank" >10.1016/j.jhydrol.2017.02.018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Regionalization of runoff models derived by genetic programming
Popis výsledku v původním jazyce
The aim of this study is to assess the potential of hydrological models derived by genetic programming (GP) to estimate runoff at ungauged catchments by regionalization. A set of 176 catchments from the MOPEX (Model Parameter Estimation Experiment) project was used for our analysis. Runoff models for each catchment were derived by genetic programming (hereafter GP models). A comparison of efficiency was made between GP models and three conceptual models (SAC-SMA, BTOPMC, GR4J). The efficiency of the GP models was in general comparable with that of the SAC-SMA and BTOPMC models but slightly lower (up to 10% for calibration and 15% in validation) than for the GR4J model. The relationship between the efficiency of the GP models and catchment descriptors (CDs) was investigated. From 13 available CDs the aridity index and mean catchment elevation explained most of the variation in the efficiency of the GP models. The runoff for each catchment was then estimated considering GP models from single or multip
Název v anglickém jazyce
Regionalization of runoff models derived by genetic programming
Popis výsledku anglicky
The aim of this study is to assess the potential of hydrological models derived by genetic programming (GP) to estimate runoff at ungauged catchments by regionalization. A set of 176 catchments from the MOPEX (Model Parameter Estimation Experiment) project was used for our analysis. Runoff models for each catchment were derived by genetic programming (hereafter GP models). A comparison of efficiency was made between GP models and three conceptual models (SAC-SMA, BTOPMC, GR4J). The efficiency of the GP models was in general comparable with that of the SAC-SMA and BTOPMC models but slightly lower (up to 10% for calibration and 15% in validation) than for the GR4J model. The relationship between the efficiency of the GP models and catchment descriptors (CDs) was investigated. From 13 available CDs the aridity index and mean catchment elevation explained most of the variation in the efficiency of the GP models. The runoff for each catchment was then estimated considering GP models from single or multip
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10501 - Hydrology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Hydrology
ISSN
0022-1694
e-ISSN
—
Svazek periodika
2017
Číslo periodika v rámci svazku
547
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
544-556
Kód UT WoS článku
000398871100040
EID výsledku v databázi Scopus
2-s2.0-85013840588