Precise temporal Disaggregation Preserving Marginals and Correlations (DiPMaC) for stationary and nonstationary processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F18%3A77617" target="_blank" >RIV/60460709:41330/18:77617 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1029/2018WR022726" target="_blank" >http://dx.doi.org/10.1029/2018WR022726</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2018WR022726" target="_blank" >10.1029/2018WR022726</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Precise temporal Disaggregation Preserving Marginals and Correlations (DiPMaC) for stationary and nonstationary processes
Popis výsledku v původním jazyce
Hydroclimatic variables such as precipitation and temperature are often measured or simulated by climate models at coarser spatiotemporal scales than those needed for operational purposes. This has motivated more than half a century of research in developing disaggregation methods that break down coarse-scale time series into finer scales, with two primary objectives: (a) reproducing the statistical properties of the fine-scale process and (b) preserving the original coarse-scale data. Existing methods either preserve a limited number of statistical moments at the fine scale, which is often insufficient and can lead to an unrepresentative approximation of the actual marginal distribution, or are based on a limited number of a priori distributional assumptions, for example, lognormal. Additionally, they are not able to account for potential nonstationarity in the underlying fine-scale process. Here we introduce a novel disaggregation method, named Disaggregation Preserving Marginals and Correlations (
Název v anglickém jazyce
Precise temporal Disaggregation Preserving Marginals and Correlations (DiPMaC) for stationary and nonstationary processes
Popis výsledku anglicky
Hydroclimatic variables such as precipitation and temperature are often measured or simulated by climate models at coarser spatiotemporal scales than those needed for operational purposes. This has motivated more than half a century of research in developing disaggregation methods that break down coarse-scale time series into finer scales, with two primary objectives: (a) reproducing the statistical properties of the fine-scale process and (b) preserving the original coarse-scale data. Existing methods either preserve a limited number of statistical moments at the fine scale, which is often insufficient and can lead to an unrepresentative approximation of the actual marginal distribution, or are based on a limited number of a priori distributional assumptions, for example, lognormal. Additionally, they are not able to account for potential nonstationarity in the underlying fine-scale process. Here we introduce a novel disaggregation method, named Disaggregation Preserving Marginals and Correlations (
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10501 - Hydrology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
WATER RESOURCES RESEARCH
ISSN
0043-1397
e-ISSN
—
Svazek periodika
54
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
24
Strana od-do
7435-7458
Kód UT WoS článku
000450726000019
EID výsledku v databázi Scopus
2-s2.0-85053668767