UAV for mapping shrubland vegetation: Does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F19%3A79372" target="_blank" >RIV/60460709:41330/19:79372 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0303243418305981?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0303243418305981?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jag.2018.10.009" target="_blank" >10.1016/j.jag.2018.10.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
UAV for mapping shrubland vegetation: Does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy?
Popis výsledku v původním jazyce
High quality data on plant species occurrence count among the essential data sources for ecological research and conservation purposes. Ecologically valuable small grain mosaics of heterogeneous shrub and herbaceous formations however pose a challenging environment for creating such species occurrence maps. Remote sensing can be useful for such purposes, it however faces several challenges, especially the need of ultra high spatial resolution (centimeters) data and distinguishing between plant species or genera. Unmanned aerial vehicles (UAVs) are capable of producing data with sufficient resolution, their use for identification of plant species is however still largely unexplored. A fusion of spectral data with LiDAR derived vertical information can improve the classification accuracy, such a solution is however costly. A cheaper alternative of vertical data acquisition can be represented by the use of the structure from motion photogrammetry (SfM) utilizing the images taken for (multi hyper)spectra
Název v anglickém jazyce
UAV for mapping shrubland vegetation: Does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy?
Popis výsledku anglicky
High quality data on plant species occurrence count among the essential data sources for ecological research and conservation purposes. Ecologically valuable small grain mosaics of heterogeneous shrub and herbaceous formations however pose a challenging environment for creating such species occurrence maps. Remote sensing can be useful for such purposes, it however faces several challenges, especially the need of ultra high spatial resolution (centimeters) data and distinguishing between plant species or genera. Unmanned aerial vehicles (UAVs) are capable of producing data with sufficient resolution, their use for identification of plant species is however still largely unexplored. A fusion of spectral data with LiDAR derived vertical information can improve the classification accuracy, such a solution is however costly. A cheaper alternative of vertical data acquisition can be represented by the use of the structure from motion photogrammetry (SfM) utilizing the images taken for (multi hyper)spectra
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Applied Earth Observation and Geoinformation
ISSN
0303-2434
e-ISSN
0303-2434
Svazek periodika
75
Číslo periodika v rámci svazku
75
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
12
Strana od-do
151-162
Kód UT WoS článku
000452814800013
EID výsledku v databázi Scopus
2-s2.0-85062823060