Tails of extremes: Advancing a graphical method and harnessing big data to assess precipitation extremes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F19%3A81516" target="_blank" >RIV/60460709:41330/19:81516 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0309170819304671?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0309170819304671?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.advwatres.2019.103448" target="_blank" >10.1016/j.advwatres.2019.103448</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tails of extremes: Advancing a graphical method and harnessing big data to assess precipitation extremes
Popis výsledku v původním jazyce
Extremes are rare and unexpected. This limits observations and constrains our knowledge on their predictability and behavior. Graphical tools are among the many methods developed to study extremes. A major weakness is that they rely on visual-inspection inferences which are subjective and make applications to large datasets time consuming and impractical. Here, we advance a graphical method, the so-called Mean Excess Function (MEF), into an algorithmic procedure. MEF investigates the mean value of a variable over threshold, and thus, focuses on extremes. We formulate precise and easy to apply statistical tests, based on the MEF, to assess if observed data can be described by exponential or heavier tails. As a real-world example, we apply our method in 21,348 daily precipitation records from all over the globe. Results show that the exponential tail hypothesis is rejected in 75,8% of the records indicating that heavy-tail distributions (alternative hypothesis) can better describe rainfall extremes. Th
Název v anglickém jazyce
Tails of extremes: Advancing a graphical method and harnessing big data to assess precipitation extremes
Popis výsledku anglicky
Extremes are rare and unexpected. This limits observations and constrains our knowledge on their predictability and behavior. Graphical tools are among the many methods developed to study extremes. A major weakness is that they rely on visual-inspection inferences which are subjective and make applications to large datasets time consuming and impractical. Here, we advance a graphical method, the so-called Mean Excess Function (MEF), into an algorithmic procedure. MEF investigates the mean value of a variable over threshold, and thus, focuses on extremes. We formulate precise and easy to apply statistical tests, based on the MEF, to assess if observed data can be described by exponential or heavier tails. As a real-world example, we apply our method in 21,348 daily precipitation records from all over the globe. Results show that the exponential tail hypothesis is rejected in 75,8% of the records indicating that heavy-tail distributions (alternative hypothesis) can better describe rainfall extremes. Th
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10503 - Water resources
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADVANCES IN WATER RESOURCES
ISSN
0309-1708
e-ISSN
1872-9657
Svazek periodika
134
Číslo periodika v rámci svazku
N
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
000496256900014
EID výsledku v databázi Scopus
2-s2.0-85074275323