Sensitivity analysis of parameters and contrasting performance of ground filtering algorithms with UAV photogrammetry-based and LiDAR point clouds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F20%3A82146" target="_blank" >RIV/60460709:41330/20:82146 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21110/20:00341988
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/17538947.2020.1791267" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/17538947.2020.1791267</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/17538947.2020.1791267" target="_blank" >10.1080/17538947.2020.1791267</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sensitivity analysis of parameters and contrasting performance of ground filtering algorithms with UAV photogrammetry-based and LiDAR point clouds
Popis výsledku v původním jazyce
Most ground filtering algorithms are primarily designed for airborne LiDAR point cloud processing and their successful use in identifying ground points from photogrammetric point clouds remains questionable. We compared six ground filtering algorithms implemented in Metashape, ArcGIS, CloudCompare, LAStools, and PDAL. We used UAV photogrammetry-based (acquired under leaf-off conditions) and airborne LiDAR (leaf-on) point clouds of the same area to: (i) compare accuracy of generated DTMs (ii) evaluate the effect of vegetation density and terrain slope on filtering accuracy and (iii) assess which algorithm parameters have the greatest effect on the filtering accuracy. Our results show that the performance of filtering algorithms was affected by the point cloud type, terrain slope and vegetation cover. The results were generally better for LiDAR (RMSE 0,13-0,19 m) than for photogrammetric (RMSE 0,19-0,23 m) point clouds. The behavior in varying vegetation and terrain conditions was consistent for LiDAR
Název v anglickém jazyce
Sensitivity analysis of parameters and contrasting performance of ground filtering algorithms with UAV photogrammetry-based and LiDAR point clouds
Popis výsledku anglicky
Most ground filtering algorithms are primarily designed for airborne LiDAR point cloud processing and their successful use in identifying ground points from photogrammetric point clouds remains questionable. We compared six ground filtering algorithms implemented in Metashape, ArcGIS, CloudCompare, LAStools, and PDAL. We used UAV photogrammetry-based (acquired under leaf-off conditions) and airborne LiDAR (leaf-on) point clouds of the same area to: (i) compare accuracy of generated DTMs (ii) evaluate the effect of vegetation density and terrain slope on filtering accuracy and (iii) assess which algorithm parameters have the greatest effect on the filtering accuracy. Our results show that the performance of filtering algorithms was affected by the point cloud type, terrain slope and vegetation cover. The results were generally better for LiDAR (RMSE 0,13-0,19 m) than for photogrammetric (RMSE 0,19-0,23 m) point clouds. The behavior in varying vegetation and terrain conditions was consistent for LiDAR
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-17156Y" target="_blank" >GJ17-17156Y: Spojení LiDARu a multispektrálních dat z UAV pro posouzení fyziografické diverzity posttěžebních lokalit</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Digital Earth
ISSN
1753-8947
e-ISSN
1753-8955
Svazek periodika
13
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
23
Strana od-do
1-23
Kód UT WoS článku
000547045900001
EID výsledku v databázi Scopus
2-s2.0-85087831953