Prediction of ammonia absorption in ionic liquids based on extreme learning machine modelling and a novel molecular descriptor S-EP
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F20%3A82220" target="_blank" >RIV/60460709:41330/20:82220 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S001393512030846X" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S001393512030846X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.envres.2020.109951" target="_blank" >10.1016/j.envres.2020.109951</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of ammonia absorption in ionic liquids based on extreme learning machine modelling and a novel molecular descriptor S-EP
Popis výsledku v původním jazyce
The large amounts of ammonia emissions generated from industrial production have caused serious environmental pollution problems, such as soil acidification, eutrophication, the formation of fine particles and changes in the global greenhouse balance, and also greatly endanger human health. At present, effectively reducing ammonia emissions or recovering ammonia is still a huge challenge. Ionic liquids (ILs) as a new class of green solvent have been introduced for ammonia absorption with great potential, but a huge number on combination systems of ILs lead to the difficulty of measuring the ammonia solubility in all ILs by experiments (e.g., danger and cost). Hereby, this study proposed a novel approach for estimating the ammonia solubility in different ILs. A predictive model was developed based on the novel Algorithm - extreme learning machine (ELM) and the molecular descriptors of electrostatic potential surface areas (SEP) as input parameters. Besides, 502 data points of ammonia solubility in 17
Název v anglickém jazyce
Prediction of ammonia absorption in ionic liquids based on extreme learning machine modelling and a novel molecular descriptor S-EP
Popis výsledku anglicky
The large amounts of ammonia emissions generated from industrial production have caused serious environmental pollution problems, such as soil acidification, eutrophication, the formation of fine particles and changes in the global greenhouse balance, and also greatly endanger human health. At present, effectively reducing ammonia emissions or recovering ammonia is still a huge challenge. Ionic liquids (ILs) as a new class of green solvent have been introduced for ammonia absorption with great potential, but a huge number on combination systems of ILs lead to the difficulty of measuring the ammonia solubility in all ILs by experiments (e.g., danger and cost). Hereby, this study proposed a novel approach for estimating the ammonia solubility in different ILs. A predictive model was developed based on the novel Algorithm - extreme learning machine (ELM) and the molecular descriptors of electrostatic potential surface areas (SEP) as input parameters. Besides, 502 data points of ammonia solubility in 17
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Environmental Research
ISSN
0013-9351
e-ISSN
1096-0953
Svazek periodika
189
Číslo periodika v rámci svazku
109951
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
000576641600010
EID výsledku v databázi Scopus
2-s2.0-85089025080