Nanometer CeO2 doped high silica ZSM-5 heterogeneous catalytic ozonation of sulfamethoxazole in water
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F21%3A85677" target="_blank" >RIV/60460709:41330/21:85677 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0304389421000364" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0304389421000364</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jhazmat.2021.125072" target="_blank" >10.1016/j.jhazmat.2021.125072</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nanometer CeO2 doped high silica ZSM-5 heterogeneous catalytic ozonation of sulfamethoxazole in water
Popis výsledku v původním jazyce
A novel CeO2 doped high silica ZSM-5 (CeO2 HSZSM-5) composite was originally fabricated via ammonia precipitation for the catalytic ozonation of sulfamethoxazole (SMX). Physicochemical properties have been investigated through electron microscope, Raman spectroscopy, X-ray photoelectron spectroscopy, etc. The prepared nanometer CeO2 HSZSM-5 had a much higher specific surface (348-395 m2 per g), a finer crystallite size (8,2-33,5 nm) and superior stability. Temperature-programmed desorption and reduction analysis revealed that the formed CeO2 nanoparticles on the surface of CeO2 HSZSM-5 could improve the reducibility of surface-capping oxygen, induce more oxygen vacancies and promote oxygen migration. CeO2 HSZSM-5 exhibited excellent catalytic performance for SMX mineralization in the pH range of environmental waters. The great enhancement of CeO2 HSZSM-5 catalytic activity was ascribed to the conversion of O3 into active oxygen involved in SMX mineralization, including.OH, O2.- and 1O2. This work pro
Název v anglickém jazyce
Nanometer CeO2 doped high silica ZSM-5 heterogeneous catalytic ozonation of sulfamethoxazole in water
Popis výsledku anglicky
A novel CeO2 doped high silica ZSM-5 (CeO2 HSZSM-5) composite was originally fabricated via ammonia precipitation for the catalytic ozonation of sulfamethoxazole (SMX). Physicochemical properties have been investigated through electron microscope, Raman spectroscopy, X-ray photoelectron spectroscopy, etc. The prepared nanometer CeO2 HSZSM-5 had a much higher specific surface (348-395 m2 per g), a finer crystallite size (8,2-33,5 nm) and superior stability. Temperature-programmed desorption and reduction analysis revealed that the formed CeO2 nanoparticles on the surface of CeO2 HSZSM-5 could improve the reducibility of surface-capping oxygen, induce more oxygen vacancies and promote oxygen migration. CeO2 HSZSM-5 exhibited excellent catalytic performance for SMX mineralization in the pH range of environmental waters. The great enhancement of CeO2 HSZSM-5 catalytic activity was ascribed to the conversion of O3 into active oxygen involved in SMX mineralization, including.OH, O2.- and 1O2. This work pro
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Hazardous Materials
ISSN
0304-3894
e-ISSN
1873-3336
Svazek periodika
2021
Číslo periodika v rámci svazku
411
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
000638070400005
EID výsledku v databázi Scopus
2-s2.0-85099333148