Global scale massive feature extraction from monthly hydroclimatic time series Statistical characterizations, spatial patterns and hydrological similarity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F21%3A86949" target="_blank" >RIV/60460709:41330/21:86949 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0048969720381432?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0048969720381432?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scitotenv.2020.144612" target="_blank" >10.1016/j.scitotenv.2020.144612</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Global scale massive feature extraction from monthly hydroclimatic time series Statistical characterizations, spatial patterns and hydrological similarity
Popis výsledku v původním jazyce
Hydroclimatic time series analysis focuses on a few feature types which describe a small portion of the entire information content of the observations. Aiming to exploit a larger part of the available information and, thus, to deliver more reliable results here we approach hydroclimatic time series analysis differently, by performing massive feature extraction. In this respect, we develop a big data framework for hydroclimatic variable behaviour characterization. This framework relies on approximately 60 diverse features and is completely automatic (in the sense that it does not depend on the hydroclimatic process at hand). We apply the new framework to characterize mean monthly temperature, total monthly precipitation and mean monthly river flow. The applications are conducted at the global scale by exploiting 40 year long time series originating from over 13 000 stations. We extract interpretable knowledge on seasonality, trends, autocorrelation, long range dependence and entropy, and on feature ty
Název v anglickém jazyce
Global scale massive feature extraction from monthly hydroclimatic time series Statistical characterizations, spatial patterns and hydrological similarity
Popis výsledku anglicky
Hydroclimatic time series analysis focuses on a few feature types which describe a small portion of the entire information content of the observations. Aiming to exploit a larger part of the available information and, thus, to deliver more reliable results here we approach hydroclimatic time series analysis differently, by performing massive feature extraction. In this respect, we develop a big data framework for hydroclimatic variable behaviour characterization. This framework relies on approximately 60 diverse features and is completely automatic (in the sense that it does not depend on the hydroclimatic process at hand). We apply the new framework to characterize mean monthly temperature, total monthly precipitation and mean monthly river flow. The applications are conducted at the global scale by exploiting 40 year long time series originating from over 13 000 stations. We extract interpretable knowledge on seasonality, trends, autocorrelation, long range dependence and entropy, and on feature ty
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10501 - Hydrology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Science of the Total Environment
ISSN
0048-9697
e-ISSN
1879-1026
Svazek periodika
767
Číslo periodika v rámci svazku
144612
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
68
Strana od-do
1-68
Kód UT WoS článku
000617681100051
EID výsledku v databázi Scopus
2-s2.0-85099361084