The use of serially complete station data to improve the temporal continuity of gridded precipitation and temperature estimates
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F21%3A86953" target="_blank" >RIV/60460709:41330/21:86953 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.ametsoc.org/view/journals/hydr/aop/JHM-D-20-0313.1/JHM-D-20-0313.1.xml?tab_body=abstract-display" target="_blank" >https://journals.ametsoc.org/view/journals/hydr/aop/JHM-D-20-0313.1/JHM-D-20-0313.1.xml?tab_body=abstract-display</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1175/JHM-D-20-0313.1" target="_blank" >10.1175/JHM-D-20-0313.1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The use of serially complete station data to improve the temporal continuity of gridded precipitation and temperature estimates
Popis výsledku v původním jazyce
Stations are an important source of meteorological data, but often suffer from missing values and short observation periods. Gap filling is widely used to generate serially complete datasets (SCDs), which are subsequently used to produce gridded meteorological estimates. However, the value of SCDs in spatial interpolation is scarcely studied. Based on our recent efforts to develop a SCD over North America (SCDNA), we explore the extent to which gap filling improves gridded precipitation and temperature estimates. We address two specific questions: 1) Can SCDNA improve the statistical accuracy of gridded estimates in North America 2) Can SCDNA improve estimates of trends on gridded data In addressing these questions, we also evaluate the extent to which results depend on the spatial density of the station network and the spatial interpolation methods used. Results show that the improvement in statistical interpolation due to gap filling is more obvious for precipitation, followed by minimum temperatur
Název v anglickém jazyce
The use of serially complete station data to improve the temporal continuity of gridded precipitation and temperature estimates
Popis výsledku anglicky
Stations are an important source of meteorological data, but often suffer from missing values and short observation periods. Gap filling is widely used to generate serially complete datasets (SCDs), which are subsequently used to produce gridded meteorological estimates. However, the value of SCDs in spatial interpolation is scarcely studied. Based on our recent efforts to develop a SCD over North America (SCDNA), we explore the extent to which gap filling improves gridded precipitation and temperature estimates. We address two specific questions: 1) Can SCDNA improve the statistical accuracy of gridded estimates in North America 2) Can SCDNA improve estimates of trends on gridded data In addressing these questions, we also evaluate the extent to which results depend on the spatial density of the station network and the spatial interpolation methods used. Results show that the improvement in statistical interpolation due to gap filling is more obvious for precipitation, followed by minimum temperatur
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10501 - Hydrology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF HYDROMETEOROLOGY
ISSN
1525-755X
e-ISSN
1525-7541
Svazek periodika
22
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
1553-1568
Kód UT WoS článku
000663568900013
EID výsledku v databázi Scopus
2-s2.0-85110385548