Extreme learning machine models for predicting the n-octanol/water partition coefficient (Kow) data of organic compounds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F22%3A91505" target="_blank" >RIV/60460709:41330/22:91505 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2213343722014257" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2213343722014257</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jece.2022.108552" target="_blank" >10.1016/j.jece.2022.108552</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extreme learning machine models for predicting the n-octanol/water partition coefficient (Kow) data of organic compounds
Popis výsledku v původním jazyce
The partition coefficient of n-octanol/water (Kow) is generally considered a valuable characteristic in many natural sciences fields. Predictive quantitative structure-property and relationship (QSPR) models for Kow are encouraged since the experimental data are not always available. Extreme learning machine (ELM) method with the advantages of fast learning speed and good generalization ability has been applied to various domains. This work introduced COSMO descriptors of molecules as descriptors and the ELM algorithm to construct estimation models for Kow of organics. Four ELM models were developed and their outcomes were compared with the MLR models produced by the same descriptors. Results revealed that the proposed ELM models were reliable and applicable to predicting the logKow values of compounds, especially the ELM4 model with the best correlation coefficient R2 (0,949) and root-mean-square error RMSE (0,358). Therefore, the proposed approaches are effective and feasible, and can be extensivel
Název v anglickém jazyce
Extreme learning machine models for predicting the n-octanol/water partition coefficient (Kow) data of organic compounds
Popis výsledku anglicky
The partition coefficient of n-octanol/water (Kow) is generally considered a valuable characteristic in many natural sciences fields. Predictive quantitative structure-property and relationship (QSPR) models for Kow are encouraged since the experimental data are not always available. Extreme learning machine (ELM) method with the advantages of fast learning speed and good generalization ability has been applied to various domains. This work introduced COSMO descriptors of molecules as descriptors and the ELM algorithm to construct estimation models for Kow of organics. Four ELM models were developed and their outcomes were compared with the MLR models produced by the same descriptors. Results revealed that the proposed ELM models were reliable and applicable to predicting the logKow values of compounds, especially the ELM4 model with the best correlation coefficient R2 (0,949) and root-mean-square error RMSE (0,358). Therefore, the proposed approaches are effective and feasible, and can be extensivel
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING
ISSN
2213-3437
e-ISSN
2213-3437
Svazek periodika
10
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
1-8
Kód UT WoS článku
000859750100005
EID výsledku v databázi Scopus
2-s2.0-85139105297