Positional errors in species distribution modelling are not overcome by the coarser grains of analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F22%3A91596" target="_blank" >RIV/60460709:41330/22:91596 - isvavai.cz</a>
Výsledek na webu
<a href="https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.13956" target="_blank" >https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.13956</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/2041-210X.13956" target="_blank" >10.1111/2041-210X.13956</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Positional errors in species distribution modelling are not overcome by the coarser grains of analysis
Popis výsledku v původním jazyce
The performance of species distribution models is known to be affected by analysis grain and positional error of species occurrences. Coarsening of the analysis grain has been suggested to compensate for positional errors. Nevertheless, this way of dealing with positional errors has never been thoroughly tested. With increasing use of finescale environmental data in SDMs, it is important to test this assumption. Models using finescale environmental data are more likely to be negatively affected by positional error as the inaccurate occurrences might easier end up in unsuitable environment. This can result in inappropriate conservation actions. Here, we examined the tradeoffs between positional error and analysis grain and provide recommendations for best practice. We generated narrow niche virtual species using environmental variables derived from LiDAR point clouds at 5 x 5 m finescale. We simulated the positional error in the range of 5 m to 99 m and evaluated the effects of several spatial grai
Název v anglickém jazyce
Positional errors in species distribution modelling are not overcome by the coarser grains of analysis
Popis výsledku anglicky
The performance of species distribution models is known to be affected by analysis grain and positional error of species occurrences. Coarsening of the analysis grain has been suggested to compensate for positional errors. Nevertheless, this way of dealing with positional errors has never been thoroughly tested. With increasing use of finescale environmental data in SDMs, it is important to test this assumption. Models using finescale environmental data are more likely to be negatively affected by positional error as the inaccurate occurrences might easier end up in unsuitable environment. This can result in inappropriate conservation actions. Here, we examined the tradeoffs between positional error and analysis grain and provide recommendations for best practice. We generated narrow niche virtual species using environmental variables derived from LiDAR point clouds at 5 x 5 m finescale. We simulated the positional error in the range of 5 m to 99 m and evaluated the effects of several spatial grai
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
<a href="/cs/project/SS02030018" target="_blank" >SS02030018: Centrum pro krajinu a biodiverzitu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Methods in Ecology and Evolution
ISSN
2041-210X
e-ISSN
2041-2096
Svazek periodika
13
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
2289-2302
Kód UT WoS článku
000842324500001
EID výsledku v databázi Scopus
2-s2.0-85136912927