Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Species distribution models affected by positional uncertainty in species occurrences can still be ecologically interpretable

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F23%3A97278" target="_blank" >RIV/60460709:41330/23:97278 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1111/ecog.06358" target="_blank" >http://dx.doi.org/10.1111/ecog.06358</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/ecog.06358" target="_blank" >10.1111/ecog.06358</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Species distribution models affected by positional uncertainty in species occurrences can still be ecologically interpretable

  • Popis výsledku v původním jazyce

    Species distribution models (SDMs) have become a common tool in studies of species-environment relationships but can be negatively affected by positional uncertainty of underlying species occurrence data. Previous work has documented the effect of positional uncertainty on model predictive performance, but its consequences for inference about species-environment relationships remain largely unknown. Here we use over 12 000 combinations of virtual and real environmental variables and virtual species, as well as a real case study, to investigate how accurately SDMs can recover species-environment relationships after applying known positional errors to species occurrence data. We explored a range of environmental predictors with various spatial heterogeneity, species' niche widths, sample sizes and magnitudes of positional error. Positional uncertainty decreased predictive model performance for all modeled scenarios. The absolute and relative importance of environmental predictors and the shape of species-environmental relationships co-varied with a level of positional uncertainty. These differences were much weaker than those observed for overall model performance, especially for homogenous predictor variables. This suggests that, at least for the example species and conditions analyzed, the negative consequences of positional uncertainty on model performance did not extend as strongly to the ecological interpretability of the models. Although the findings are encouraging for practitioners using SDMs to reveal generative mechanisms based on spatially uncertain data, they suggest greater consequences for applications utilizing distributions predicted from SDMs using positionally uncertain data, such as conservation prioritization and biodiversity monitoring.

  • Název v anglickém jazyce

    Species distribution models affected by positional uncertainty in species occurrences can still be ecologically interpretable

  • Popis výsledku anglicky

    Species distribution models (SDMs) have become a common tool in studies of species-environment relationships but can be negatively affected by positional uncertainty of underlying species occurrence data. Previous work has documented the effect of positional uncertainty on model predictive performance, but its consequences for inference about species-environment relationships remain largely unknown. Here we use over 12 000 combinations of virtual and real environmental variables and virtual species, as well as a real case study, to investigate how accurately SDMs can recover species-environment relationships after applying known positional errors to species occurrence data. We explored a range of environmental predictors with various spatial heterogeneity, species' niche widths, sample sizes and magnitudes of positional error. Positional uncertainty decreased predictive model performance for all modeled scenarios. The absolute and relative importance of environmental predictors and the shape of species-environmental relationships co-varied with a level of positional uncertainty. These differences were much weaker than those observed for overall model performance, especially for homogenous predictor variables. This suggests that, at least for the example species and conditions analyzed, the negative consequences of positional uncertainty on model performance did not extend as strongly to the ecological interpretability of the models. Although the findings are encouraging for practitioners using SDMs to reveal generative mechanisms based on spatially uncertain data, they suggest greater consequences for applications utilizing distributions predicted from SDMs using positionally uncertain data, such as conservation prioritization and biodiversity monitoring.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10619 - Biodiversity conservation

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/SS02030018" target="_blank" >SS02030018: Centrum pro krajinu a biodiverzitu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Ecography

  • ISSN

    0906-7590

  • e-ISSN

    0906-7590

  • Svazek periodika

    2023

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    1-16

  • Kód UT WoS článku

    000977937200001

  • EID výsledku v databázi Scopus

    2-s2.0-85153759379