Disentangling spatial and environmental effects: Flexible methods for community ecology and macroecology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F22%3A91602" target="_blank" >RIV/60460709:41330/22:91602 - isvavai.cz</a>
Výsledek na webu
<a href="https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.4028" target="_blank" >https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.4028</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/ecs2.4028" target="_blank" >10.1002/ecs2.4028</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Disentangling spatial and environmental effects: Flexible methods for community ecology and macroecology
Popis výsledku v původním jazyce
Community ecologists and macroecologists have long sought to evaluate the importance of environmental conditions in determining species distributions, community composition, and diversity across sites. Different methods have been used to estimate species environment relationships, but their differences to jointly fit and disentangle spatial autocorrelation and structure remain poorly studied. We compared how methods in four broad families of statistical models estimated the contribution of the environment and space to variation in species occurrence and abundance. These methods included redundancy analysis (RDA), generalized linear models (GLMs), generalized additive models (GAMs), and three types of tree based machine learning (ML) methods: boosted regression trees (BRT), random forests, and regression trees. The spatial component of the model consisted of Morans eigenvector maps (MEMs in RDA, GLM, and ML), smooth spatial splines (in GAM), or tree based nonlinear modeling of spatial coordinates (in
Název v anglickém jazyce
Disentangling spatial and environmental effects: Flexible methods for community ecology and macroecology
Popis výsledku anglicky
Community ecologists and macroecologists have long sought to evaluate the importance of environmental conditions in determining species distributions, community composition, and diversity across sites. Different methods have been used to estimate species environment relationships, but their differences to jointly fit and disentangle spatial autocorrelation and structure remain poorly studied. We compared how methods in four broad families of statistical models estimated the contribution of the environment and space to variation in species occurrence and abundance. These methods included redundancy analysis (RDA), generalized linear models (GLMs), generalized additive models (GAMs), and three types of tree based machine learning (ML) methods: boosted regression trees (BRT), random forests, and regression trees. The spatial component of the model consisted of Morans eigenvector maps (MEMs in RDA, GLM, and ML), smooth spatial splines (in GAM), or tree based nonlinear modeling of spatial coordinates (in
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ecosphere
ISSN
2150-8925
e-ISSN
2150-8925
Svazek periodika
13
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
000787139500001
EID výsledku v databázi Scopus
2-s2.0-85128903784