Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Integrating Ground-based Observations and Radar Data Into Gridding Sub-daily Precipitation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00531913" target="_blank" >RIV/67985807:_____/20:00531913 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s11269-020-02622-4" target="_blank" >http://dx.doi.org/10.1007/s11269-020-02622-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11269-020-02622-4" target="_blank" >10.1007/s11269-020-02622-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Integrating Ground-based Observations and Radar Data Into Gridding Sub-daily Precipitation

  • Popis výsledku v původním jazyce

    A new and general approach is proposed for interpolating 6-h precipitation series over large spatial areas. The outputs are useful for distributed hydrological modelling and studies of flooding. We apply our approach to large-scale data, measured between 2014 and 2016 at 159 weather stations network of Meteo Romania, using weather radar information and local topography as ancillary data. Novelty of our approach is in systematic development of a statistical model underlying the interpolation. Seven methods have been tested for the interpolation of the 6-h precipitation measurements: four regression methods (linear regression via ordinary least squares (OLS), with and without logarithmic transformation, and two models of generalized additive model (GAM) class, with logarithmic and identity links), and three regression-kriging models (one uses semivariogram fitted separately every 6-h, based on the residuals of the GAM with identity links models, and other two with pooled semivariograms, based on the OLS and GAM with identity links models). The prediction accuracy of the spatial interpolation methods was evaluated on a part of the dataset not used in the model-fitting stage. Due to the good results in interpolating sub-daily precipitation, normal general additive model with identity link followed with kriging of residuals with kriging parameters estimated from pooled semivariograms was applied to construct the final 6-h precipitation maps (PRK-NGAM). The final results of this work are the 6-h precipitation gridded datasets available in high spatial resolution (1000 m × 1000 m), together with their estimated accuracy.

  • Název v anglickém jazyce

    Integrating Ground-based Observations and Radar Data Into Gridding Sub-daily Precipitation

  • Popis výsledku anglicky

    A new and general approach is proposed for interpolating 6-h precipitation series over large spatial areas. The outputs are useful for distributed hydrological modelling and studies of flooding. We apply our approach to large-scale data, measured between 2014 and 2016 at 159 weather stations network of Meteo Romania, using weather radar information and local topography as ancillary data. Novelty of our approach is in systematic development of a statistical model underlying the interpolation. Seven methods have been tested for the interpolation of the 6-h precipitation measurements: four regression methods (linear regression via ordinary least squares (OLS), with and without logarithmic transformation, and two models of generalized additive model (GAM) class, with logarithmic and identity links), and three regression-kriging models (one uses semivariogram fitted separately every 6-h, based on the residuals of the GAM with identity links models, and other two with pooled semivariograms, based on the OLS and GAM with identity links models). The prediction accuracy of the spatial interpolation methods was evaluated on a part of the dataset not used in the model-fitting stage. Due to the good results in interpolating sub-daily precipitation, normal general additive model with identity link followed with kriging of residuals with kriging parameters estimated from pooled semivariograms was applied to construct the final 6-h precipitation maps (PRK-NGAM). The final results of this work are the 6-h precipitation gridded datasets available in high spatial resolution (1000 m × 1000 m), together with their estimated accuracy.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Water Resources Management

  • ISSN

    0920-4741

  • e-ISSN

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    19

  • Strana od-do

    3479-3497

  • Kód UT WoS článku

    000563174700004

  • EID výsledku v databázi Scopus

    2-s2.0-85089369361