Integrating Ground-based Observations and Radar Data Into Gridding Sub-daily Precipitation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00531913" target="_blank" >RIV/67985807:_____/20:00531913 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11269-020-02622-4" target="_blank" >http://dx.doi.org/10.1007/s11269-020-02622-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11269-020-02622-4" target="_blank" >10.1007/s11269-020-02622-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integrating Ground-based Observations and Radar Data Into Gridding Sub-daily Precipitation
Popis výsledku v původním jazyce
A new and general approach is proposed for interpolating 6-h precipitation series over large spatial areas. The outputs are useful for distributed hydrological modelling and studies of flooding. We apply our approach to large-scale data, measured between 2014 and 2016 at 159 weather stations network of Meteo Romania, using weather radar information and local topography as ancillary data. Novelty of our approach is in systematic development of a statistical model underlying the interpolation. Seven methods have been tested for the interpolation of the 6-h precipitation measurements: four regression methods (linear regression via ordinary least squares (OLS), with and without logarithmic transformation, and two models of generalized additive model (GAM) class, with logarithmic and identity links), and three regression-kriging models (one uses semivariogram fitted separately every 6-h, based on the residuals of the GAM with identity links models, and other two with pooled semivariograms, based on the OLS and GAM with identity links models). The prediction accuracy of the spatial interpolation methods was evaluated on a part of the dataset not used in the model-fitting stage. Due to the good results in interpolating sub-daily precipitation, normal general additive model with identity link followed with kriging of residuals with kriging parameters estimated from pooled semivariograms was applied to construct the final 6-h precipitation maps (PRK-NGAM). The final results of this work are the 6-h precipitation gridded datasets available in high spatial resolution (1000 m × 1000 m), together with their estimated accuracy.
Název v anglickém jazyce
Integrating Ground-based Observations and Radar Data Into Gridding Sub-daily Precipitation
Popis výsledku anglicky
A new and general approach is proposed for interpolating 6-h precipitation series over large spatial areas. The outputs are useful for distributed hydrological modelling and studies of flooding. We apply our approach to large-scale data, measured between 2014 and 2016 at 159 weather stations network of Meteo Romania, using weather radar information and local topography as ancillary data. Novelty of our approach is in systematic development of a statistical model underlying the interpolation. Seven methods have been tested for the interpolation of the 6-h precipitation measurements: four regression methods (linear regression via ordinary least squares (OLS), with and without logarithmic transformation, and two models of generalized additive model (GAM) class, with logarithmic and identity links), and three regression-kriging models (one uses semivariogram fitted separately every 6-h, based on the residuals of the GAM with identity links models, and other two with pooled semivariograms, based on the OLS and GAM with identity links models). The prediction accuracy of the spatial interpolation methods was evaluated on a part of the dataset not used in the model-fitting stage. Due to the good results in interpolating sub-daily precipitation, normal general additive model with identity link followed with kriging of residuals with kriging parameters estimated from pooled semivariograms was applied to construct the final 6-h precipitation maps (PRK-NGAM). The final results of this work are the 6-h precipitation gridded datasets available in high spatial resolution (1000 m × 1000 m), together with their estimated accuracy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Water Resources Management
ISSN
0920-4741
e-ISSN
—
Svazek periodika
34
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
3479-3497
Kód UT WoS článku
000563174700004
EID výsledku v databázi Scopus
2-s2.0-85089369361