Finding Misclassified Natura 2000 Habitats by Applying Outlier Detection to Sentinel-1 and Sentinel-2 Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F23%3A97202" target="_blank" >RIV/60460709:41330/23:97202 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3390/rs15184409" target="_blank" >http://dx.doi.org/10.3390/rs15184409</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs15184409" target="_blank" >10.3390/rs15184409</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finding Misclassified Natura 2000 Habitats by Applying Outlier Detection to Sentinel-1 and Sentinel-2 Data
Popis výsledku v původním jazyce
The monitoring of Natura 2000 habitats (Habitat Directive 92/43/EEC) is a key activity ensuring the sufficient protection of European biodiversity. Reporting on the status of Natura 2000 habitats is required every 6 years. Although field mapping is still an indispensable source of data on the status of Natura 2000 habitats, and very good field-based data exist in some countries, keeping the field-based habitat maps up to date can be an issue. Remote sensing techniques represent an excellent alternative. Here, we present a new method for detecting habitats that were likely misclassified during the field mapping or that have changed since then. The method identifies the possible habitat mapping errors as the so-called attribute outliers, i.e., outlying observations in the feature space of all relevant (spectral and other) characteristics of an individual habitat patch. We used the Czech Natura 2000 Habitat Layer as field-based habitat data. To prepare the feature space of habitat characteristics, we used a fusion of Sentinel-1 and Sentinel-2 satellite data along with a Digital Elevation Model. We compared outlier ratings using the robust Mahalanobis distance and Local Outlier Factor using three different thresholds (Tukey rule, histogram-based Scott's rule, and 95% quantiles in & chi;2 distribution). The Mahalanobis distance thresholded by the 95% & chi;2 quantile achieved the best results, and, because of its high specificity, appeared as a promising tool for identifying erroneously mapped or changed habitats. The presented method can, therefore, be used as a guide to target field updates of Natura 2000 habitat maps or for other habitat/land cover mapping activities where the detection of misclassifications or changes is needed.
Název v anglickém jazyce
Finding Misclassified Natura 2000 Habitats by Applying Outlier Detection to Sentinel-1 and Sentinel-2 Data
Popis výsledku anglicky
The monitoring of Natura 2000 habitats (Habitat Directive 92/43/EEC) is a key activity ensuring the sufficient protection of European biodiversity. Reporting on the status of Natura 2000 habitats is required every 6 years. Although field mapping is still an indispensable source of data on the status of Natura 2000 habitats, and very good field-based data exist in some countries, keeping the field-based habitat maps up to date can be an issue. Remote sensing techniques represent an excellent alternative. Here, we present a new method for detecting habitats that were likely misclassified during the field mapping or that have changed since then. The method identifies the possible habitat mapping errors as the so-called attribute outliers, i.e., outlying observations in the feature space of all relevant (spectral and other) characteristics of an individual habitat patch. We used the Czech Natura 2000 Habitat Layer as field-based habitat data. To prepare the feature space of habitat characteristics, we used a fusion of Sentinel-1 and Sentinel-2 satellite data along with a Digital Elevation Model. We compared outlier ratings using the robust Mahalanobis distance and Local Outlier Factor using three different thresholds (Tukey rule, histogram-based Scott's rule, and 95% quantiles in & chi;2 distribution). The Mahalanobis distance thresholded by the 95% & chi;2 quantile achieved the best results, and, because of its high specificity, appeared as a promising tool for identifying erroneously mapped or changed habitats. The presented method can, therefore, be used as a guide to target field updates of Natura 2000 habitat maps or for other habitat/land cover mapping activities where the detection of misclassifications or changes is needed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
<a href="/cs/project/SS01010046" target="_blank" >SS01010046: Možnosti aktualizace mapování biotopů NATURA 2000 pokročilými metodami dálkového průzkumu Země</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
2072-4292
Svazek periodika
15
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
001074020400001
EID výsledku v databázi Scopus
2-s2.0-85173027792