Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Large-Domain Multisite Precipitation Generation: Operational Blueprint and Demonstration for 1,000 Sites

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F23%3A97558" target="_blank" >RIV/60460709:41330/23:97558 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1029/2022WR034094" target="_blank" >http://dx.doi.org/10.1029/2022WR034094</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2022WR034094" target="_blank" >10.1029/2022WR034094</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Large-Domain Multisite Precipitation Generation: Operational Blueprint and Demonstration for 1,000 Sites

  • Popis výsledku v původním jazyce

    Stochastic simulations of spatiotemporal patterns of hydroclimatic processes, such as precipitation, are needed to build alternative but equally plausible inputs for water-related design and management, and to estimate uncertainty and assess risks. However, while existing stochastic simulation methods are mature enough to deal with relatively small domains and coarse spatiotemporal scales, additional work is required to develop simulation tools for large-domain analyses, which are more and more common in an increasingly interconnected world. This study proposes a methodological advancement in the CoSMoS framework, which is a flexible simulation framework preserving arbitrary marginal distributions and correlations, to dramatically decrease the computational burden and make the algorithm fast enough to perform large-domain simulations in short time. The proposed approach focuses on correlated processes with mixed (zero-inflated) Uniform marginal distributions. These correlated processes act as intermediates between the target process to simulate (precipitation) and parent Gaussian processes that are the core of the simulation algorithm. Working in the mixed-Uniform space enables a substantial simplification of the so-called correlation transformation functions, which represent a computational bottle neck in the original CoSMoS formulation. As a proof of concept, we simulate 40 years of daily precipitation records from 1,000 gauging stations in the Mississippi River basin. Moreover, we extend CoSMoS incorporating parent non-Gaussian processes with different degrees of tail dependence and suggest potential improvements including the separate simulation of occurrence and intensity processes, and the use of advection, anisotropy, and nonstationary spatiotemporal correlation functions.

  • Název v anglickém jazyce

    Large-Domain Multisite Precipitation Generation: Operational Blueprint and Demonstration for 1,000 Sites

  • Popis výsledku anglicky

    Stochastic simulations of spatiotemporal patterns of hydroclimatic processes, such as precipitation, are needed to build alternative but equally plausible inputs for water-related design and management, and to estimate uncertainty and assess risks. However, while existing stochastic simulation methods are mature enough to deal with relatively small domains and coarse spatiotemporal scales, additional work is required to develop simulation tools for large-domain analyses, which are more and more common in an increasingly interconnected world. This study proposes a methodological advancement in the CoSMoS framework, which is a flexible simulation framework preserving arbitrary marginal distributions and correlations, to dramatically decrease the computational burden and make the algorithm fast enough to perform large-domain simulations in short time. The proposed approach focuses on correlated processes with mixed (zero-inflated) Uniform marginal distributions. These correlated processes act as intermediates between the target process to simulate (precipitation) and parent Gaussian processes that are the core of the simulation algorithm. Working in the mixed-Uniform space enables a substantial simplification of the so-called correlation transformation functions, which represent a computational bottle neck in the original CoSMoS formulation. As a proof of concept, we simulate 40 years of daily precipitation records from 1,000 gauging stations in the Mississippi River basin. Moreover, we extend CoSMoS incorporating parent non-Gaussian processes with different degrees of tail dependence and suggest potential improvements including the separate simulation of occurrence and intensity processes, and the use of advection, anisotropy, and nonstationary spatiotemporal correlation functions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    WATER RESOURCES RESEARCH

  • ISSN

    0043-1397

  • e-ISSN

    0043-1397

  • Svazek periodika

    59

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    24

  • Strana od-do

    1-24

  • Kód UT WoS článku

    000973564300001

  • EID výsledku v databázi Scopus

    2-s2.0-85152536109