Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Snow depth time series Generation: Effective simulation at multiple time scales

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F24%3A100811" target="_blank" >RIV/60460709:41330/24:100811 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.hydroa.2024.100177" target="_blank" >https://doi.org/10.1016/j.hydroa.2024.100177</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.hydroa.2024.100177" target="_blank" >10.1016/j.hydroa.2024.100177</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Snow depth time series Generation: Effective simulation at multiple time scales

  • Popis výsledku v původním jazyce

    Snow depth (SD) is a crucial variable of the water, energy, and nutrient cycles, impacting water quantity and quality, the occurrence of floods and droughts, snowrelated hazards, and sub -surface ecological functions. As a result, quantifying SD dynamics is crucial for several scientific and practical applications. Ground measurements of SD provide information at sparse locations, and physical global model simulations provide information at relatively coarse spatial resolutions. An approach to complement this information is using stochastic models that generate time series of hydroclimatic variables, preserving their statistical properties in a computationally -effective manner. However, stochastic generation methods to produce SD time series exclusively do not exist in the literature. Here, we apply a stochastic model to produce synthetic daily SD time series trained by 448 stations in Canada. We show that the model captures key statistical properties of the observed records, including the daily distributions of zero and non -zero SD, temporal clustering (i.e., autocorrelation), and seasonal patterns. The model also excelled in capturing the observed higher -order L -moments at multiple temporal scales, with biases between simulated and observed L -skewness and L -kurtosis within (-0.1, +0.1) for 93.0 % and 98.3 % of the stations, respectively. The stochastic modelling approach introduced here advances the generation of SD time series, which are needed to develope Earth -system models and assess the risk of snowmelt flooding that lead to severe damage and fatalities.

  • Název v anglickém jazyce

    Snow depth time series Generation: Effective simulation at multiple time scales

  • Popis výsledku anglicky

    Snow depth (SD) is a crucial variable of the water, energy, and nutrient cycles, impacting water quantity and quality, the occurrence of floods and droughts, snowrelated hazards, and sub -surface ecological functions. As a result, quantifying SD dynamics is crucial for several scientific and practical applications. Ground measurements of SD provide information at sparse locations, and physical global model simulations provide information at relatively coarse spatial resolutions. An approach to complement this information is using stochastic models that generate time series of hydroclimatic variables, preserving their statistical properties in a computationally -effective manner. However, stochastic generation methods to produce SD time series exclusively do not exist in the literature. Here, we apply a stochastic model to produce synthetic daily SD time series trained by 448 stations in Canada. We show that the model captures key statistical properties of the observed records, including the daily distributions of zero and non -zero SD, temporal clustering (i.e., autocorrelation), and seasonal patterns. The model also excelled in capturing the observed higher -order L -moments at multiple temporal scales, with biases between simulated and observed L -skewness and L -kurtosis within (-0.1, +0.1) for 93.0 % and 98.3 % of the stations, respectively. The stochastic modelling approach introduced here advances the generation of SD time series, which are needed to develope Earth -system models and assess the risk of snowmelt flooding that lead to severe damage and fatalities.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10501 - Hydrology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GM22-33266M" target="_blank" >GM22-33266M: Vyhodnocení intenzifikace suchozemského hydrologického cyklu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF HYDROLOGY X

  • ISSN

    2589-9155

  • e-ISSN

    2589-9155

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    100177

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

    1-10

  • Kód UT WoS článku

    001224709400001

  • EID výsledku v databázi Scopus

    2-s2.0-85189758537