Snow depth time series Generation: Effective simulation at multiple time scales
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F24%3A100811" target="_blank" >RIV/60460709:41330/24:100811 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.hydroa.2024.100177" target="_blank" >https://doi.org/10.1016/j.hydroa.2024.100177</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.hydroa.2024.100177" target="_blank" >10.1016/j.hydroa.2024.100177</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Snow depth time series Generation: Effective simulation at multiple time scales
Popis výsledku v původním jazyce
Snow depth (SD) is a crucial variable of the water, energy, and nutrient cycles, impacting water quantity and quality, the occurrence of floods and droughts, snowrelated hazards, and sub -surface ecological functions. As a result, quantifying SD dynamics is crucial for several scientific and practical applications. Ground measurements of SD provide information at sparse locations, and physical global model simulations provide information at relatively coarse spatial resolutions. An approach to complement this information is using stochastic models that generate time series of hydroclimatic variables, preserving their statistical properties in a computationally -effective manner. However, stochastic generation methods to produce SD time series exclusively do not exist in the literature. Here, we apply a stochastic model to produce synthetic daily SD time series trained by 448 stations in Canada. We show that the model captures key statistical properties of the observed records, including the daily distributions of zero and non -zero SD, temporal clustering (i.e., autocorrelation), and seasonal patterns. The model also excelled in capturing the observed higher -order L -moments at multiple temporal scales, with biases between simulated and observed L -skewness and L -kurtosis within (-0.1, +0.1) for 93.0 % and 98.3 % of the stations, respectively. The stochastic modelling approach introduced here advances the generation of SD time series, which are needed to develope Earth -system models and assess the risk of snowmelt flooding that lead to severe damage and fatalities.
Název v anglickém jazyce
Snow depth time series Generation: Effective simulation at multiple time scales
Popis výsledku anglicky
Snow depth (SD) is a crucial variable of the water, energy, and nutrient cycles, impacting water quantity and quality, the occurrence of floods and droughts, snowrelated hazards, and sub -surface ecological functions. As a result, quantifying SD dynamics is crucial for several scientific and practical applications. Ground measurements of SD provide information at sparse locations, and physical global model simulations provide information at relatively coarse spatial resolutions. An approach to complement this information is using stochastic models that generate time series of hydroclimatic variables, preserving their statistical properties in a computationally -effective manner. However, stochastic generation methods to produce SD time series exclusively do not exist in the literature. Here, we apply a stochastic model to produce synthetic daily SD time series trained by 448 stations in Canada. We show that the model captures key statistical properties of the observed records, including the daily distributions of zero and non -zero SD, temporal clustering (i.e., autocorrelation), and seasonal patterns. The model also excelled in capturing the observed higher -order L -moments at multiple temporal scales, with biases between simulated and observed L -skewness and L -kurtosis within (-0.1, +0.1) for 93.0 % and 98.3 % of the stations, respectively. The stochastic modelling approach introduced here advances the generation of SD time series, which are needed to develope Earth -system models and assess the risk of snowmelt flooding that lead to severe damage and fatalities.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10501 - Hydrology
Návaznosti výsledku
Projekt
<a href="/cs/project/GM22-33266M" target="_blank" >GM22-33266M: Vyhodnocení intenzifikace suchozemského hydrologického cyklu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF HYDROLOGY X
ISSN
2589-9155
e-ISSN
2589-9155
Svazek periodika
23
Číslo periodika v rámci svazku
100177
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
001224709400001
EID výsledku v databázi Scopus
2-s2.0-85189758537