Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Advancing toxicity studies of per- and poly-fluoroalkyl substances (pfass) through machine learning: Models, mechanisms, and future directions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F24%3A98227" target="_blank" >RIV/60460709:41330/24:98227 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.scitotenv.2024.174201" target="_blank" >https://doi.org/10.1016/j.scitotenv.2024.174201</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2024.174201" target="_blank" >10.1016/j.scitotenv.2024.174201</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Advancing toxicity studies of per- and poly-fluoroalkyl substances (pfass) through machine learning: Models, mechanisms, and future directions

  • Popis výsledku v původním jazyce

    Perfluorinated and perfluoroalkyl substances (PFASs), encompassing a vast array of isomeric chemicals, are recognized as typical emerging contaminants with direct or potential impacts on human health and the ecological environment. With the complex and elusive toxicological profiles of PFASs, machine learning (ML) has been increasingly employed in their toxicity studies due to its proficiency in prediction and data analytics. This integration is poised to become a predominant trend in environmental toxicology, propelled by the swift advancements in computational technology. This review diligently examines the literature to encapsulate the varied objectives of employing ML in the toxicity studies of PFASs: (1) Utilizing ML to establish Quantitative Structure-Activity Relationship (QSAR) models for PFASs with diverse toxicity endpoints, facilitating the targeted toxicity prediction of unidentified PFASs; (2) Investigating and substantiating the Adverse Outcome Pathway (AOP) through the synergy of ML and traditional toxicological methods, with this refining the toxicity assessment framework for PFASs; (3) Dissecting and elucidating the features of established ML models to advance Open Research into the toxicity of PFASs, with a primary focus on determinants and mechanisms. The discourse extends to an in-depth examination of ML studies, segregating findings based on their distinct application trajectories. Given that ML represents a nascent paradigm within PFASs research, this review delineates the collective challenges encountered in the ML-mediated study of PFAS toxicity and proffers strategic guidance for ensuing investigations.

  • Název v anglickém jazyce

    Advancing toxicity studies of per- and poly-fluoroalkyl substances (pfass) through machine learning: Models, mechanisms, and future directions

  • Popis výsledku anglicky

    Perfluorinated and perfluoroalkyl substances (PFASs), encompassing a vast array of isomeric chemicals, are recognized as typical emerging contaminants with direct or potential impacts on human health and the ecological environment. With the complex and elusive toxicological profiles of PFASs, machine learning (ML) has been increasingly employed in their toxicity studies due to its proficiency in prediction and data analytics. This integration is poised to become a predominant trend in environmental toxicology, propelled by the swift advancements in computational technology. This review diligently examines the literature to encapsulate the varied objectives of employing ML in the toxicity studies of PFASs: (1) Utilizing ML to establish Quantitative Structure-Activity Relationship (QSAR) models for PFASs with diverse toxicity endpoints, facilitating the targeted toxicity prediction of unidentified PFASs; (2) Investigating and substantiating the Adverse Outcome Pathway (AOP) through the synergy of ML and traditional toxicological methods, with this refining the toxicity assessment framework for PFASs; (3) Dissecting and elucidating the features of established ML models to advance Open Research into the toxicity of PFASs, with a primary focus on determinants and mechanisms. The discourse extends to an in-depth examination of ML studies, segregating findings based on their distinct application trajectories. Given that ML represents a nascent paradigm within PFASs research, this review delineates the collective challenges encountered in the ML-mediated study of PFAS toxicity and proffers strategic guidance for ensuing investigations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Science of the Total Environment

  • ISSN

    0048-9697

  • e-ISSN

    0048-9697

  • Svazek periodika

    946

  • Číslo periodika v rámci svazku

    174201

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    17

  • Strana od-do

    1-17

  • Kód UT WoS článku

    001284237100001

  • EID výsledku v databázi Scopus

    2-s2.0-85197343298