Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

UAV leaf-on, leaf-off and ALS-aided tree height: A case study on the trees in the vicinity of roads

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F24%3A98314" target="_blank" >RIV/60460709:41330/24:98314 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ufug.2024.128229" target="_blank" >https://doi.org/10.1016/j.ufug.2024.128229</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ufug.2024.128229" target="_blank" >10.1016/j.ufug.2024.128229</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    UAV leaf-on, leaf-off and ALS-aided tree height: A case study on the trees in the vicinity of roads

  • Popis výsledku v původním jazyce

    The safety of critical traffic and energy infrastructure is often threatened by surrounding vegetation. We compare the accuracy of six canopy height models (CHMs) created by combining UAV-borne digital leaf-off and leaf-on surface/terrain models with nationwide sparse airborne laser scanning (ALS) data across six different study sites. We conducted the statistical evaluation at three levels for all involved samples, distinguishing, among others, between trees at the edge and inside the forest, as well as between conifers and deciduous trees. We hypothesised that combining UAV-borne leaf-on and leaf-off data or a combination of fine-scale UAV data with broader-scale ALS may benefit specific tasks associated with vegetation dynamics or precise inventory. However, the UAV-borne CHM using leaf-on imagery yielded the best overall accuracy (MAE 1.77 m), performing best both for trees at the forest edges (MAE 1.59 m) and inside the forest (MAE 2.12 m). This dataset also performed best for deciduous trees (MAE 1.84 m) while for conifers, UAV-borne CHM using leaf-off imagery performed best (MAE 1.58 m); the differences between these two models were, however, quite small and the model based on the combination of leaf-on and leaf-off imagery performed similarly well. We conclude that UAV-based CHMs are of sufficient accuracy and adding low-resolution ALS-based terrain data does not enhance their performance. Considering the simplicity, the leaf-on UAV is sufficient for everyday forestry practice where it could replace time-consuming and laborious field surveys.

  • Název v anglickém jazyce

    UAV leaf-on, leaf-off and ALS-aided tree height: A case study on the trees in the vicinity of roads

  • Popis výsledku anglicky

    The safety of critical traffic and energy infrastructure is often threatened by surrounding vegetation. We compare the accuracy of six canopy height models (CHMs) created by combining UAV-borne digital leaf-off and leaf-on surface/terrain models with nationwide sparse airborne laser scanning (ALS) data across six different study sites. We conducted the statistical evaluation at three levels for all involved samples, distinguishing, among others, between trees at the edge and inside the forest, as well as between conifers and deciduous trees. We hypothesised that combining UAV-borne leaf-on and leaf-off data or a combination of fine-scale UAV data with broader-scale ALS may benefit specific tasks associated with vegetation dynamics or precise inventory. However, the UAV-borne CHM using leaf-on imagery yielded the best overall accuracy (MAE 1.77 m), performing best both for trees at the forest edges (MAE 1.59 m) and inside the forest (MAE 2.12 m). This dataset also performed best for deciduous trees (MAE 1.84 m) while for conifers, UAV-borne CHM using leaf-off imagery performed best (MAE 1.58 m); the differences between these two models were, however, quite small and the model based on the combination of leaf-on and leaf-off imagery performed similarly well. We conclude that UAV-based CHMs are of sufficient accuracy and adding low-resolution ALS-based terrain data does not enhance their performance. Considering the simplicity, the leaf-on UAV is sufficient for everyday forestry practice where it could replace time-consuming and laborious field surveys.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20705 - Remote sensing

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/CK02000203" target="_blank" >CK02000203: Monitoring a vyhodnocení rizikových jevů v okolí dopravní infrastruktury s využitím DPZ</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Urban Forestry & Urban Greening

  • ISSN

    1618-8667

  • e-ISSN

    1618-8667

  • Svazek periodika

    93

  • Číslo periodika v rámci svazku

    128229

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Kód UT WoS článku

    001180281300001

  • EID výsledku v databázi Scopus

    2-s2.0-85184007058