Layered SnS versus SnS2: Valence and Structural Implications on Electrochemistry and Clean Energy Electrocatalysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F16%3A43901887" target="_blank" >RIV/60461373:22310/16:43901887 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/16:33161244
Výsledek na webu
<a href="http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b06977" target="_blank" >http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b06977</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.6b06977" target="_blank" >10.1021/acs.jpcc.6b06977</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Layered SnS versus SnS2: Valence and Structural Implications on Electrochemistry and Clean Energy Electrocatalysis
Popis výsledku v původním jazyce
Despite the far-reaching applications of layered Sn chalcogenides to date, their electrochemistry and electrochemical and electrocatalytic properties remain a mystery. The bulk of current research highlights promising uses of layered Sn chalcogenides with limited discourse on the relevance of Sn valency or crystal structures to their properties. We therefore examine the electrochemistry of orthorhombic SnS and hexagonal SnS2, and determine the implications to their electrocatalytic applications, namely, oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Higher inherent electroactivity has been demonstrated in SnS2 as indicated by three distinct cathodic signals juxtaposed with a broad reduction peak in the largely electro-inactive SnS. In addition, SnS2 exhibits a faster heterogeneous electron transfer (HET) rate than SnS, though both are of less-than-sterling showing when compared to the glassy carbon (GC) electrode in terms of current intensity. The low onset potentials and current do not auger well for SnS and SnS, as electrocatalysts for ORR and OER. Contrarily, both Sn chalcogenides fare better as HER electrocatalysts, surpassing the GC electrode. SnS2 exudes stronger HER electrocatalytic behavior than SnS. The differing HER performance is explained by means of HER electrode kinetics and density functional theory (DFT) calculation. Using electrochemical impedance spectroscopy (EIS), SnS2 demonstrates significantly faster HER kinetics than SnS. The DFT study unveiled that the high electrocatalytic showing of SnS2 originated from the propitious Delta G(H) at the S edges. Conversely, Delta G(H) of SnS at all edges are disadvantageous for HER. The results provide crucial knowledge on the electrochemistry and electrocatalysis of Sn chalcogenides and create opportunities for future developments.
Název v anglickém jazyce
Layered SnS versus SnS2: Valence and Structural Implications on Electrochemistry and Clean Energy Electrocatalysis
Popis výsledku anglicky
Despite the far-reaching applications of layered Sn chalcogenides to date, their electrochemistry and electrochemical and electrocatalytic properties remain a mystery. The bulk of current research highlights promising uses of layered Sn chalcogenides with limited discourse on the relevance of Sn valency or crystal structures to their properties. We therefore examine the electrochemistry of orthorhombic SnS and hexagonal SnS2, and determine the implications to their electrocatalytic applications, namely, oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Higher inherent electroactivity has been demonstrated in SnS2 as indicated by three distinct cathodic signals juxtaposed with a broad reduction peak in the largely electro-inactive SnS. In addition, SnS2 exhibits a faster heterogeneous electron transfer (HET) rate than SnS, though both are of less-than-sterling showing when compared to the glassy carbon (GC) electrode in terms of current intensity. The low onset potentials and current do not auger well for SnS and SnS, as electrocatalysts for ORR and OER. Contrarily, both Sn chalcogenides fare better as HER electrocatalysts, surpassing the GC electrode. SnS2 exudes stronger HER electrocatalytic behavior than SnS. The differing HER performance is explained by means of HER electrode kinetics and density functional theory (DFT) calculation. Using electrochemical impedance spectroscopy (EIS), SnS2 demonstrates significantly faster HER kinetics than SnS. The DFT study unveiled that the high electrocatalytic showing of SnS2 originated from the propitious Delta G(H) at the S edges. Conversely, Delta G(H) of SnS at all edges are disadvantageous for HER. The results provide crucial knowledge on the electrochemistry and electrocatalysis of Sn chalcogenides and create opportunities for future developments.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CA - Anorganická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
—
Svazek periodika
120
Číslo periodika v rámci svazku
42
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
24098-24111
Kód UT WoS článku
000386640800022
EID výsledku v databázi Scopus
—