Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Layered SnS versus SnS2: Valence and Structural Implications on Electrochemistry and Clean Energy Electrocatalysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F16%3A43901887" target="_blank" >RIV/60461373:22310/16:43901887 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15310/16:33161244

  • Výsledek na webu

    <a href="http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b06977" target="_blank" >http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b06977</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcc.6b06977" target="_blank" >10.1021/acs.jpcc.6b06977</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Layered SnS versus SnS2: Valence and Structural Implications on Electrochemistry and Clean Energy Electrocatalysis

  • Popis výsledku v původním jazyce

    Despite the far-reaching applications of layered Sn chalcogenides to date, their electrochemistry and electrochemical and electrocatalytic properties remain a mystery. The bulk of current research highlights promising uses of layered Sn chalcogenides with limited discourse on the relevance of Sn valency or crystal structures to their properties. We therefore examine the electrochemistry of orthorhombic SnS and hexagonal SnS2, and determine the implications to their electrocatalytic applications, namely, oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Higher inherent electroactivity has been demonstrated in SnS2 as indicated by three distinct cathodic signals juxtaposed with a broad reduction peak in the largely electro-inactive SnS. In addition, SnS2 exhibits a faster heterogeneous electron transfer (HET) rate than SnS, though both are of less-than-sterling showing when compared to the glassy carbon (GC) electrode in terms of current intensity. The low onset potentials and current do not auger well for SnS and SnS, as electrocatalysts for ORR and OER. Contrarily, both Sn chalcogenides fare better as HER electrocatalysts, surpassing the GC electrode. SnS2 exudes stronger HER electrocatalytic behavior than SnS. The differing HER performance is explained by means of HER electrode kinetics and density functional theory (DFT) calculation. Using electrochemical impedance spectroscopy (EIS), SnS2 demonstrates significantly faster HER kinetics than SnS. The DFT study unveiled that the high electrocatalytic showing of SnS2 originated from the propitious Delta G(H) at the S edges. Conversely, Delta G(H) of SnS at all edges are disadvantageous for HER. The results provide crucial knowledge on the electrochemistry and electrocatalysis of Sn chalcogenides and create opportunities for future developments.

  • Název v anglickém jazyce

    Layered SnS versus SnS2: Valence and Structural Implications on Electrochemistry and Clean Energy Electrocatalysis

  • Popis výsledku anglicky

    Despite the far-reaching applications of layered Sn chalcogenides to date, their electrochemistry and electrochemical and electrocatalytic properties remain a mystery. The bulk of current research highlights promising uses of layered Sn chalcogenides with limited discourse on the relevance of Sn valency or crystal structures to their properties. We therefore examine the electrochemistry of orthorhombic SnS and hexagonal SnS2, and determine the implications to their electrocatalytic applications, namely, oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Higher inherent electroactivity has been demonstrated in SnS2 as indicated by three distinct cathodic signals juxtaposed with a broad reduction peak in the largely electro-inactive SnS. In addition, SnS2 exhibits a faster heterogeneous electron transfer (HET) rate than SnS, though both are of less-than-sterling showing when compared to the glassy carbon (GC) electrode in terms of current intensity. The low onset potentials and current do not auger well for SnS and SnS, as electrocatalysts for ORR and OER. Contrarily, both Sn chalcogenides fare better as HER electrocatalysts, surpassing the GC electrode. SnS2 exudes stronger HER electrocatalytic behavior than SnS. The differing HER performance is explained by means of HER electrode kinetics and density functional theory (DFT) calculation. Using electrochemical impedance spectroscopy (EIS), SnS2 demonstrates significantly faster HER kinetics than SnS. The DFT study unveiled that the high electrocatalytic showing of SnS2 originated from the propitious Delta G(H) at the S edges. Conversely, Delta G(H) of SnS at all edges are disadvantageous for HER. The results provide crucial knowledge on the electrochemistry and electrocatalysis of Sn chalcogenides and create opportunities for future developments.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    CA - Anorganická chemie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physical Chemistry C

  • ISSN

    1932-7447

  • e-ISSN

  • Svazek periodika

    120

  • Číslo periodika v rámci svazku

    42

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    24098-24111

  • Kód UT WoS článku

    000386640800022

  • EID výsledku v databázi Scopus