Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multimaterial 3D-Printed Water Electrolyzer with Earth-Abundant Electrodeposited Catalysts

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F18%3A43916043" target="_blank" >RIV/60461373:22310/18:43916043 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.8b04327" target="_blank" >https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.8b04327</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acssuschemeng.8b04327" target="_blank" >10.1021/acssuschemeng.8b04327</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multimaterial 3D-Printed Water Electrolyzer with Earth-Abundant Electrodeposited Catalysts

  • Popis výsledku v původním jazyce

    Additive manufacturing (AM) is reaching a stage of development that enables high throughput fabrication of end products/devices. An important contribution to the advancement of this technology is given by the possibility to combine different materials into a single printing process or integrate diverse technologies for the fabrication of different components. Here we show how a prototype water electrolyzer can be fabricated using two different AM technologies, named selective laser melting and fused deposition modeling to produce the metallic components (electrodes) and the liquid/gas handling components (cells) of the electrolyzer, respectively. Both components are produced following a precise design which enables their perfect integration and assembly. The electrodes are produced in stainless steel which can be directly used for both the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction. However, we propose to introduce a simple and rapid electrochemical surface modification of the steel electrodes with more efficient earth-abundant catalysts in order to enhance the overall water splitting performance. For the HER we deposited a thin film of Ni-MoS2 composite while a NiFe double hydroxide film is deposited on the anode. Scanning electron microscopy combined with energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy are employed to characterize the electrode surface before and after the electrodeposition with the catalysts. Electrochemical testing is then used to optimize the composition of the catalysts by verifying the catalytic performance of the electrodes. As proof-of-concept, an electrochemical testing is performed with the 3D printed and assembled device. © 2018 American Chemical Society.

  • Název v anglickém jazyce

    Multimaterial 3D-Printed Water Electrolyzer with Earth-Abundant Electrodeposited Catalysts

  • Popis výsledku anglicky

    Additive manufacturing (AM) is reaching a stage of development that enables high throughput fabrication of end products/devices. An important contribution to the advancement of this technology is given by the possibility to combine different materials into a single printing process or integrate diverse technologies for the fabrication of different components. Here we show how a prototype water electrolyzer can be fabricated using two different AM technologies, named selective laser melting and fused deposition modeling to produce the metallic components (electrodes) and the liquid/gas handling components (cells) of the electrolyzer, respectively. Both components are produced following a precise design which enables their perfect integration and assembly. The electrodes are produced in stainless steel which can be directly used for both the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction. However, we propose to introduce a simple and rapid electrochemical surface modification of the steel electrodes with more efficient earth-abundant catalysts in order to enhance the overall water splitting performance. For the HER we deposited a thin film of Ni-MoS2 composite while a NiFe double hydroxide film is deposited on the anode. Scanning electron microscopy combined with energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy are employed to characterize the electrode surface before and after the electrodeposition with the catalysts. Electrochemical testing is then used to optimize the composition of the catalysts by verifying the catalytic performance of the electrodes. As proof-of-concept, an electrochemical testing is performed with the 3D printed and assembled device. © 2018 American Chemical Society.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10402 - Inorganic and nuclear chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACS Sustainable Chemistry &amp; Engineering

  • ISSN

    2168-0485

  • e-ISSN

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    16968-16975

  • Kód UT WoS článku

    000452344900109

  • EID výsledku v databázi Scopus

    2-s2.0-85056902148